
MASTER THESIS

INTERACTION OF AMPHYPHILIC BOTTLE BRUSH AND STAR
POLYMERS WITH A BIOLOGICAL MEMBRANE: A

COARSE-GRAINED MOLECULAR DYNAMICS STUDY

Author:
Marco KRUMMENACHER

Supervisor:
Priv.-Doz. Dr. rer. nat. habil Martin O. STEINHAUSER

Co-Supervisor:
Prof. Dr. Stefan GOEDECKER

Dr. Deb Sankar DE

September 26, 2019



2

Abstract

Studying the interaction of branched amphiphilic copolymers with biological
membranes is interesting because of two aspects: there is a great interest in us-
ing them as drug carriers and microplastic wast is rapidly accumulating in the
environment. Molecular dynamics simulations are a powerful tool for a deeper
understanding of the interaction of such polymers with a biological membrane
in terms of the time- and length scale. Penetration of the hydrophobic parts
of amphiphilic star and bottle brush copolymers could be observed. Bottle
brush polymers showed a shielding effect the longer the hydrophilic arms are,
whereas the penetration of star polymers depended on their functionality f .
Therefore, the penetration rate strongly depends on the topology of the am-
phiphilic copolymers.
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1. Introduction

The polarity of water is responsible for the existence of life on earth. It causes
hydrophobic and hydrophilic interactions of water with other chemical groups.
Biological membranes which separate living organisms from their environment
are a result of this effect. Membranes consist of amphiphilic molecules mostly
phospholipids which are composed of a relatively short hydrophilic head which
is covalently bond to a long hydrophobic tail. This amphiphilicity causes the
self-assembly of a bilayer in aqueous environment, where all hydrophilic heads
are pointed towards water, see Fig. 2.1. There are different types of phospho-
lipids in membranes which differ in their chemical structure, but all of them
show amphiphilicity. Depending on their concentration, several properties such
as the fluidity or the bending angle of membranes are different. Furthermore,
a membrane also must be permeable for essential metabloc molecules from the
outside and waste products from the inside. Such a semipermeability is ensured
by membrane proteins which are able to form channels for very destinct chemi-
cal compounds. There are also other integral and peripheral proteins which are
not involved in transport but enhance chemical reactions at the surface of mem-
branes. Hence, a biological membrane is a very complex construct of nature in-
cluding a lot of different components which have very different functionalities.
Simulating all properties of a biological membrane is an impossible challenge.
Therefore, simulations focus on the key issues which differ in each individual
study. In this work the focus lies on the interactions between membranes con-
sisting of lipids and branched amphiphilic copolymers.
Using amphiphilic copolymers in medical applications especially as drug carri-
ers is of high interest [1]. Vesicles composed of amphiphilic copolymers show
long-term stability in physiological environment but are usually toxic for cells.
Vesicles composed of phospholipids on the other hand show no toxicity but are
not long-term stable in a physiological environment. An intersting approach to
solve these problems are hybride vesicles [2] which are composed of both am-
phiphilic copolymers and lipids. The polymers give the membrane its stability
whereas the lipids are responsible for biocompatibility.
Experimental studies are often limited in time scale and spacial resolution so
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8 1. INTRODUCTION

that it is difficult to gain insight into detailed dynamical properties of systems.
Molecular dynamics simulations can complement experimental studies and give
a detailed insight into dynamical processes.

Figure 1.1: Schematic depiction of a biological membrane.

Various computational studies have been peformed regaring the self-assemby
of amphiphilic copolymers. Different self-assembled formations of poly(acrylic
acid)-b-polystyrrene (PAA-b-PS), an AB block copolymer, could be observed,
such as vesicle and lamellae formation, depending on the ratio of PS/PAA and
the polymer concentration [3]. Amphiphilic bottle brush polymers which had
an ABA topology showed membrane formation for a hydrophilic-hydrophobic
ratio of 25:75 [4]. A rehological study of amphiphilic tri-block copolymers in
water showed micellar microstructures when a strong flow was applied and af-
ter a high enough number of integration steps [5]. Gel-networks of amphiphilic
star polymers with hydrophobic arm ends showed an increased cluster forma-
tion with increased hydrophobic attraction [6]. Hence, amphiphilic copolymer
networks show a broad variety of self-assembled structures in simulation stud-
ies.
But not only systems consisting of amphiphilic copolymers were studied exten-
sively over the past years but also their interaction with lipids. Raft formation
of lipids in a membrane consisting of AB copolymers could be observed de-
pending on the concentration of lipids and the thickness of the polymer mem-
brane [7]. The thicker the membrane, the higher the lipid concentration had
to be in order to form rafts. A similar study with a membrane of amphiphilic
ABA copolymers showed that raft formation occured at lower concentration in
a bilayer than in a monolayer structures [8]. This can be explained by the im-
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miscibility between polymers and lipids in the bilayer configuration.
The detailed understanding of the interaction between polymers and mem-
branes is not only of high interest because of medical applications but also due
to the increase of microplastic in the environment. A study in 2018 has found
microplastic in the stool of eight people from different continents [9]. The in-
teraction of some of these polymers with a bilayer membrane were presented
in a simulation study [10]. Polypropylene and polypropylene were equally dis-
tributed inside the bilayer whereas polystyrene showed cluster formation. Not
only purely hydrophobic polymers are exensively used in industry but also
polymers with amphiphilic topology. They are components in soaps where they
are the main ingredient to solve fat in water [11]. Therefore, having on the one
hand, the pharamceutical approach of using amphiphilic polymers as drug car-
riers and on the other hand the environmental issue, studying the interaction of
such polymers with biological membranes is of high interest.
This thesis is structured as follows: first, the model used for the simulations is
presented in Chapter 2. The coarse graining approach, solvent free simulation
and the force model are presented in more detail. In Chapter 3 an insight into
the principles of molecular dynamics is given. The different nummerical eval-
uations are described in Chapter 4 and the corresponding results are presented
in Chapter 5. Finally, in Chapter 6 a review of the results of this work as well as
a short outlook is provided.
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2. Model

Molecular dynamics simulations are based on a potential model which deter-
mines the interactions between particles. Depending on the purpose of the
simulation, different methods on different length- and time scales are used. In
simulations regarding a very small scale, all atom or even quantum models are
applied. On the mesoscale level, as in this work, usually coarsed grained mod-
els are used whereas for large scales finite element methods are applied. In the
first section the term coarse graining is described in more detail. Section 2.2 de-
scribes the usage of Newton’s equation of motion in simulations. In Sec. 2.3 an
overview of the potentials which are used in this work is provided. The simu-
lation procedure is described in the last Section 2.4.

2.1 Coarse Graining

Biological membranes are mainly composed of phospholipids which determine
their bilayer structure. Phospholipids are amphiphilic macromolecules com-
posed of a hydrophilic head group and a hydrophobic tail which are covalently
connected by a phosphorus group. There are many different types of phos-
phlipids in nature and the detailed chemical structure of their head and tail
group is very different, but all show amphiliticity. Since in the simulations,
in this work, the focus lies on the amphiphilic interactions between lipids and
polymers, a highly coarse-grained model is applied in contrast to other mod-
els based on the MARTINI force field [12]. The lipids in our model are repre-
sented by three beads: one bead represents the hydrophilic head and two beads
the hydrophobic tail, see Fig. 2.1 (a). Therefore, certain chemical properties are
lost. Using a highly coarsed-grained model raises computational efficiency and,
hence, more particles can be simulated. Three bead models have already been
successfully tested for membrane simulations and are suitable to test a vaiety of
physical properties, including self-assembly, fusion, bilayer melting, lipid mix-
tures, rafts, and protein-bilayer interactions [13, 14].
The polymers considered in this work, as well as the membrane, are composed
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12 2. MODEL

of hydrophobic and hydrophilic particles. Two general polymer topologies
were simulated: bottle brushes and star polymers, see Fig. 2.1 (b). For the
bottle brush polymers two different amphiphilic profiles were studied. One
amphiphilic profile consists of a hydrophobic backbone and hydrophilic arms,
which is referred to bottle brush polymer type A. The other amphiphilic profile is
a bottle brush polymer which is partially hydrophobic. This profile is referred
to bottle brush polymer type B in this work. The center of star polymers is always
hydrophilic and some monomers towards the end of the arms are hydrophobic,
see Fig. 2.1.

Figure 2.1: Schematic depiction of the coarse-grained model. (a) Bead-spring
model of the lipids. The hydrophobic tails are depicted in yellow color whereas
the hydrophilic heads are in red color. (b) Bead-spring model of the amphiphilic
bottle brush and star polymers. The hydrophobic parts are depicted in blue
color whereas the hydrophilic parts are in grey color.

2.2 Equation of Motion

Although some quantum mechanical effects are implicitly built in the potentials
e.g. the Pauli repulsion, see Sec. 2.3, the particles move according to classical
mechanics. Hence, the motion of a particle i with mass mi is given by Newtons
equation of motion:

Fi = mi
dr 2

i
dt2 , (2.1)
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where Fi is the force acting on the ith particle, ri is its position and t denotes
time. The forces acting on each particle, which are described in Sec. 2.3, are
determined by the potential energy U(r) by the following relation

F pot
i = −~∇riU

tot
i (r), (2.2)

where ~∇ri =
(

dU tot
i (r)
dxi

, dU tot
i (r)
dyi

, dU tot
i (r)
dzi

)
. The model used in this work is solvent

free and integrated in a canonical NVT-ensemble. Because in a NVT-ensemble
the temperature is constant the initial velocites of the particles have to satisfy
the equipartition theorem: 〈

1
2

mi|v 0
i |
〉

=
3
2

kBT. (2.3)

Hydrophobic interactions caused by the solvent are described by an additional
attractive potential acting between hydrophobic particles. Other interactions of
the particles with the solvent caused by Bownian motion can be described by
Langevin Dynamics [15, 16] which couples the system to a heat bath. This is
done by splitting the Brownian force into a slowly acting friction force Fγ(t) of
Stokes type and a fast fluctuating stochastic force Ri(t). The total force acting
on a particle has then the following form

F tot
i = −~∇riU

tot
i (r) + γ

dri

dt
+ Ri(t), (2.4)

where γ dri
dt = Fγ(t) and γ is the friction coefficient. The properties of the

stochastic Langevin force are given by the fluctuation dissipation theorem [17]:

〈Ri(t) ·Rj(t′)〉 = 6kBTγδi,jδ(t− t′), (2.5)

where T is the temperature and kB is the Boltzmann constant. Furthermore,
since on average no momentum is transferred from the solvent to the particles,
the stochastic force has also to satisfiy

〈Ri(t)〉 = 0. (2.6)

Therefore, this stochastic force is of Gaussian type, also called white noise. The
friction force constant can be obtained by hydrodynamic calculations for suffi-
ciently large spherical particles [17] and is given by

γ = 6πηsa, (2.7)

where a is the radius of the particles and ηs the viscosity of the solvent.
The total force in Eq. 2.4 is used to propagate the positions and velocities of the
particles in time. For this purpose the velocity Verlet algorithm is used which is
described in Sec. 3.
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2.3 Particle Interactions

The total potential energy U of a N-body system can be written as

U(R) =
N

∑
i

U1(ri) +
N

∑
i

N

∑
j>i

U2(ri, rj) +
N

∑
i

N

∑
j>i

N

∑
j>i>k

U3(ri, rj, rk) + . . . , (2.8)

where U1, U2, U3 . . . describe the interactions between particles and external
fields and between themself. Externel fields could for example be of electrostatic
or magnetic nature but are ignored in this work except for reflecting boundary
conditions, see Sec. 3.3. Interactions of more than second order are usually ne-
glected due to computational efficiency. The pair potentials presented in this
section and used for the simulation in this work are the Lennard-Jones (LJ) po-
tential to mimic soft spheres, an attractive potential to simulate hydrophobic
effects and a spring potential to describe covalent bonds. A bending poten-
tial which is introduced to stretch the bonds is the only potential of third or-
der. There are also other potentials used to describe certain properties such
as Coulomb or dipole potentials but they are not used in this work. A more
detailed insight to those interactions can be found in Ref. [18]. In general one
distinguishes between intra- and intermolecular potentials. Intramolecular po-
tentials act between the particles of one molecule. Intermolecular potentials are
used to describe the interactions between molecules. In the following section,
the intermolecular potentials are described first followed by the intramolecular
potentials.

Lennard-Jones potential

In coarse-grained simulations the particles are described as mass points. In
order to characterize excluded volume effects i.e. simulating soft beads, the
most widely used potential is the LJ-(6-12) potential:

ULJ(ri,j) = 4 ε

( σ

ri,j

)12

−
(

σ

ri,j

)6
 , (2.9)

where ε and σ are the reduced energy and length unit and ri,j = |ri − rj| is the
distance of two mass points. Energy parameter ε determines the depth of the
potential whereas the distance parameter σ determines the length scale. The re-
pulsive r −12

i,j part can be explained by the Pauli repulsion principle from quan-
tum mechanics, which shows an exponential decay. Due to the fact that ex-
ponential functions are computationally expensive, a less expensive polynome
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is chosen for the repulsion term. The attractive r −6
i,j term describes long ranged

van der Waals interactions. Since for computational efficiency, potentials should
be kept short ranged in order to keep the force calculations at a minimum, a
short ranged version was introduced by Weeks-Chandler-Anderson [19] where
the potential is cut-off at its minimum value rc =

6
√

2 and shifted by ε so that it
is purely repulsive:

UWCA(ri,j) =

4 ε

[(
σ

ri,j

)12
−
(

σ
ri,j

)6
]
+ ε ri,j < rc =

6
√

2σ,

0 otherwise.
(2.10)

In Fig 2.2 both the LJ-(6-12) and the WCA-approximation described by Eq. 2.9
and 2.10, respectively, are depicted for ε = σ = 1.0.

Figure 2.2: The Lennard-Jones potential (black) and the Weeks-Chandler-
Anderson approximation (blue). The WCA approximation in this work is used
to describe excluded volume effects and therefore transform the mass points
into soft beads.

Hydrophobic Potential

In order to mimic hydrophobic interactions in a solvent free model, an attrac-
tive potential is introduced between hydrophobic beads. Several attractive po-
tentials based on the LJ-potential have been proposed and successfully used in
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simulations [6, 20, 21]. However, in this work a cosine shaped potential was
used which was proposed in Ref. [13]:

UATTR(ri,j) =


−ε 0 < ri,j < rc,

−ε cos2
(

π(ri,j−rc)

2 hc

)
rc < ri,j < rc + hc,

0 otherwise,

(2.11)

where hc determines the range of the attraction and rc the cut-off radius of the
WCA potential. Although this potential is very different to the LJ-based attrac-
tive potential, no significant difference in the results could be observed in sim-
ulations but the cosine shaped potential is preferable due to its slightly shorter
interaction range [21]. Figure 2.3 shows a plot of the cosine shaped attractive
potential with different attraction ranges hc.

Figure 2.3: Cosine shaped attractive potential described in Eq. 2.11 with differ-
ent attraction range hc. This potential simulates the hydrophobic attraction.

FENE Potential

The simplest approach to characterize covalent bonds in simulation is a har-
monic spring model

UHARM(ri,i+1) =
κHARM

2
(|ri − ri+1 − l0|)2, (2.12)
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where ri and ri+1 are the coordinates of the two connected beads, l0 is the equi-
librium bondlength and κHARM is the harmonic spring constant. However,
since the bondlength of covalent bonds is not very well described by a har-
monic potential, often a Finitely Extensible Non-linear Elastic (FENE) potential
is used which restricts the bondlengh to a maximum threshold [22]:

UFENE(ri,i+1) =

− κFENE
2 R 2

0 ln
(

1− r 2
i,i+1
R 2

0

)
r < R0,

0 otherwise,
(2.13)

where κFENE = 30 ε/σ2 is the stiffness, R0 = 1.5σ is the maximum bondlength
and r = |ri − ri+1|. In Fig. 2.4 a plot of Eq. 2.13 is shown with ε = σ = 1. To-
gether with the LJ-(6-12) potential a resulting equilibrium bondlength of about
l0 ≈ 0.97 in reduced units is achieved.

Figure 2.4: The FENE potential with κFENE = 30 ε/σ2 and R0 = 1.5σ with
ε = σ = 1. Together with the LJ-(6-12) potential an elastic potential with an
equilibrium bondlength of l0 ≈ 0.97 is achieved.

Bending Potential

Since phospholipids are usually not fully flexible but rather stiff, a bending po-
tential which stretches the lipids is introduced. Such a bending potential can
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be described as in Ref. [13] as a pair potential between the kth and the kth + 2
particle

UBEND(rk) =
κBEND

2
(rk − 4σ), (2.14)

where rk = |rk− rk+2|. Since in this pair potential, the motion of the particle rk+1
is completely neglected, a harmonic bending potential as described in Ref. [23]
was used in this work. This potential has the form

UBEND =
κBEND

2
(ui+1 − ui)

2 = κBEND(1− cos θi), (2.15)

where ui = ri+1 − ri/|ri+1 − ri|, θi = ^(ri,i+1, ri+1,i+2) and κBEND determines
the stiffness of the bond. In Fig. 2.5 the bending potential for κBEND = 10 ε/σ2

is depicted. Two equilibrium positions at θ = 0 and θ = π can be observed.
The latter equilibrium position is prohibited by the LJ-potential since it would
mean that particle i and i + 2 would be at exactly the same position.

Figure 2.5: Bending potential described in Eq. 2.15 with κ = 10 ε/σ2. Two
equilibrium positions at θ = 0 and θ = π can be observed whereas latter is
prohibited by the LJ-potential.

The total potential energy is then given by the sum of Eq. 2.10, 2.11, 2.13 and
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2.15:

UTOT =

Intermolecular Potentials︷ ︸︸ ︷
Ntot−1

∑
i=1

Ntot

∑
j=i+1

UWCA(ri,j) +

Nhp−1

∑
i=1

Nhp

∑
j=i+1

Uattr(ri,j) +

Nbond−1

∑
i=1

Nbond

∑
j=i+1

UFENE(ri,i+1) +
Nbond/3

∑
i=1

UBEND(θi)︸ ︷︷ ︸
Intramolecular Potentials

,

(2.16)

where Ntot is the total number of particles, Nbond the number of particles which
are covalently bond to each other and Nhp the number of particles which attract
each other due to hydrophobicity.

2.4 Experimental Set Up

As in real experiments computer experiments follow several distinct steps, see
Fig 2.6. First of all, the molecules which are used in the simulation are gener-
ated, which is the counterpart of synthesizing polymers and lipids. In a second
step, a warm-up procedure with respect to the LJ- and bending potential is per-
formed. Before mixing the lipids and polymers together, a prerun is performed
where the two different molecules reach equilibration separately. After that the
interaction between the molecules is switched on and a productive run is per-
formed. After the systems have equilibrated, evaluations are performed. The
results of these evaluations are presented in Sec. 5.

Figure 2.6: Simulation timeline which shows the procedure of the simulation of
hybride systems.
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Initialization

The initial configuration of the chains is generated in a random process, one par-
ticle at the time. An algorithm which initializes the chains, places the monomers
into the simulation box as a non-reversible random walk [24]. The first parti-
cle i of the chain is placed randomly in the simulation box. The second one
(i + 1) is also placed in a random direction but with a distance of d0 = 0.97σ
with respect to the first particle. Particle i + 2 and all further particles are also
placed randomly but are only accepted if di,i+2 > rexcluded = 1.02σ, see Fig. 2.7
(a). However, this algorithm does not ensure that particles which are far away
from each other (with respect to the particle index i) or particles from different
chains show singularities with respect to the LJ-potential. Therefore, starting
the simulation run may lead to singularities in the potentials. In order to avoid
singularities in the potential and, hence, nummerical instabilities, a warm up
procedure is first applied before starting the simulation run, see Fig. 2.7 (b).
Membrane or vesicle formation can be enhanced by shrinking the space in the
random initialization either in z-direction (enhancing membrane formation) or
all directions (enhancing vesicle formation). This results in a higher density of
the lipids at the beginning of the simulation. Hence, the lipis are closer to each
other and more hydrophobic interactions occur which, together with reflecting
boundary conditions, see Sec. 3.3, speeds up the formation of membranes and
vesicles respectively.
The initialization of hybride systems, where the interaction between branched
amphiphilic polymers and lipids is examined, the simulating box is devided
into two subspaces. First, a subbox is created where only lipids are placed, see
Fig. 2.8 (a). The branched molecules are then initialized in a shell arround the
subbox of the lipids, which has at least the size of two average lengths of the
backbone which, for a non-reversible random walk is

√
Nbackbone. In order to

ensure that the whole branched polymer is placed in the subbox, the first parti-
cle of a backbone is initialized within a thershold distance of one average back-
bone length. However, this procedure ensures only on average that all particles
of the backbone are inside the simulation box after a non reversible random
walk. Since reflecting boundary conditions are applied we need to ensure that
all particles are inside the box after the initalization. Therefore a Monte Carlo
sampling was applied, see Fig. 2.8 (b). If all particles of a branched polymer are
placed inside the simulation box, it is accepted and the next polymer is initial-
ized. If the condition is not satisfied, the polymer initialization is not accepted
and another polymer is randomly initialized. This procedure is repeated until
all particles of all polymers are initiallized inside the simulation box. Such a
Monte Carlo sampling ensures on the one hand that all particles of the polymer
are placed inside the simulation box, but also on the other hand, that the poly-
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mers are still initialized randomly. The acceptance rate of this algorithm initial-
izing bottle brush polymers with Narm = 10 and a backbone of Nbackbone = 100
is displayed in Fig. 2.9. The longer the arms are, the lower is the acceptance
rate. This fact can be explained by the decreasing probability of an arm to be
competely inside the box with increasing armlength.

Figure 2.7: (a) Initialization of the chains with a non reversible random walk
algorithm. (b) Warmup of the LJ potential to avoid numerical instabilities at the
beginning of the simulation. The figure is taken from Ref. [25].

Warm-up

As mentioned before it may happen, that some particles are very close together
in the initial configuration, what can lead to singularites in the force calculation.
In order to avoid numerical instabilities, a warmup is performed where the LJ-
and the bending potential are increased succesively until they act in their full
form on the particles.
The warmup of the LJ potentials is done in the following manner as described in
Ref. [25]. In a first step the minimum distance dmin between all particles is calcu-
lated. Since this calculation has only to be performed once it does not contribute
a lot of computational effort compared to the whole simulation. However, usu-
ally the minimum distance dmin is in the order of 1 · 10−4 and taking a safty
margin of two order of magnitudes one can simply take dmin = 1 · 10−6. As a
second step the LJ-potential is succesively increased during nwarmup integration
steps which is usually about 1000. Instead of taking the actual distance r of the
calculation, a rescaled distance of

r′ = r + ∆d− n
nwarmup

∆d (2.17)
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is taken, where n is the actual time step, r the actual distance and ∆d = rmax
cut −

dmax. The distance rmax
cut is the largest cut off of all non bonded interactions which

is in our case rmax
cut = rc, since no hydrophobic attraction is applied during the

warm-up process. In Fig. 2.7 (b) the successive increase of LJ potential during
the warmup procedure can be observed.
Not only the LJ- but also the bending potential UBEND can lead to singulari-
ties after initialization. Therefore also a warmup procedure for this potential is
introduced. This is done by successively increasing the stiffness κBEND during
nwarmup integration steps by employing κBEND · n/nwarmup. During the warmup
procedure the FENE potential acts with its entire strength since there are no
singularities due to the random walk initialization.

Figure 2.8: Initialization process of hybrid systems: (a) subdivision of the simu-
lation box and (b) Monte Carlo sampling of the amphiphilic branched polymers.

Prerun

In order to come a real experiment as close as possible a prerun is performed to
equilibrate the lipids and the polymers seperately. This can be done by distin-
guishely switching on and off the hydrophobic attraction. For neq integration
steps the hydrophobic attraction potential UATTR is swiched off between the
polymers and the lipids. All other potentials, including the attractive potential
between lipid-lipid and polymer-polymer are swiched on. This ensures that
membranes and vesicles can self-assemble before the interactions of them with
amphiphilic polymers is studied. Furthermore, in order to speed up the self as-
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Figure 2.9: Acceptance rate of the Monte Carlo algorithm which was used for
the initialization.

sembly of lipids, during the prerun, periodic boundary conditions are applied
to the subbox where the lipids were initialized, see Sec. 3.3. Thinking of this as
a real experiment, first the membrane is formed in one vessel whereas the poly-
mers are prepared in another. When both systems, the lipids and the polymers,
have reached equilibrim, the attractive hydrophobic potential between lipids
and polymers is swiched on and the two vessels are mixed together.
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3. Molecular Dynamics: An Overview

Molecular dynamics (MD) is a particle based simulation technique. The parti-
cles in the simulation move according to Newton’s classical equation of motion,
see Eq. 2.1. MD simulations are determinisic, since after having initialized po-
sitions and momenta of all particles, these two quantities can be calculated for
any point in time in the past and the future [26]. There are other techiques
which in contrast to MD are probabilistic, e.g quantum mechanics or Monte-
Caro (MC) methods [27]. Both methods, MD and MC methods take advantage
of the ergodic hypothesis [28], which states that the time average is the same
as the ensemble average, in order to describe equilibrated states. While MC
methods take a statistically large ensemble to calculate equilibrium states, MD
uses the average over a large number of timesteps. During this work, only MD
simulations were performed. Therefore, the focus on the following section lies
in the theoretical description of MD simulations.
The very first MD simulation was performed in 1957, see Ref. [29]. It was about
an examination of the phase transition of a two dimensional hard sphere sys-
tem. The further development of MD was closely related to the increasing com-
putational power in the last decades. Since this is not a thesis about the history
of MD the reader is referred to Ref. [26] for more historical facts.
The following part is organized as followed: In Sec. 3.2 the nummerical integra-
tion of the equation of motion is described. Sec. 3.3 and 3.4 give an introduction
to boundary conditions and search algorithms respectively. Last but not least,
in Sec. 3.5 some limitations of MD simulations are mentioned.

3.1 Reduced Units

Processing very small and very large numbers in computers lead to significant
numerical rounding errors. In order to avoid them dimensionless so called re-
duced units are introduced. The energy and the length are scaled according to
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ε and to σ respectively. The reduced energy and length are

E∗ =
E
ε

and r∗ =
r
σ

. (3.1)

The force F becomes
F∗ =

σ

ε
F (3.2)

in reduced units and the time is rescaled according to

t∗ =
√

ε

mσ2 t. (3.3)

Hence, the temperature is in reduced units

T∗ =
kBT

ε
, (3.4)

since kBT has the dimension of energy. These reduced units reduce numerical
rounding errors tremendously.

3.2 Numerical Integration of Differential Equations

Newton’s equation of motion (Eq. 2.1) is an ordinary differential equation of
second order. This equation is continuous and in order to solve it numerically
it has to be discretized. Instead of taking an infinite set of the independent vari-
ables position r and time t only a finite set is taken. The finitness of the variables
i.e the discretization enables computers to integrate ordinary differential equa-
tions. Not only the two variables position and time become discontinuous but
also its derivative i.e the differential quotient.
There are several numerical methods to integrate ordinary differential equa-
tions which have its advantages and disadvantages. In this section a very good
and a very bad integrator to solve Newtons equation of motion will be dis-
cussed namely the velocity Verlet and the Euler algorithm. The following sec-
tion is inspired from Ref. [26].

Euler Algorithm

The simplest approach to numerically integrate ordinary differential equation
is based on using a Taylor expansion

r(t + ∆t) = r(t) +
dr(t)

dt
∆t +

1
2!

dr 2(t)
dt2 ∆t2 +

1
3!

dr 3(t)
dt3 ∆t3 + . . . , (3.5)
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where ∆t represents a finite time step. Since calculating an infinite sum is com-
putational inefficient a truncated version can be used where an approximate
integration is performed so that the Talyor expansion becomes

r(t + ∆t) = r(t) +
dr(t)

dt
∆t +

1
2!

dr 2(t)
dt2 ∆t2. (3.6)

However, this leads to severe truncation errors. In Fig. 3.1 the position and the
energy of the integration of a one dimensional harmonic oscillator with the Eu-
ler algorithm are shown for different time steps ∆t. The larger the time step ∆t
is the more severe becomes the position and energy drift. Of course it can be
argued that a sufficiently small time step leads to a negligible error. However,
this would restrict the simulation in the time scale drastically. Furthermore, the
algorithm is also not time reversible and does not conserve the phase space vol-
ume, what is a consequence of the energy drift. Therefore, the Euler algorithm
is not appropriate for MD simulations.

Figure 3.1: Euler algorthm applied to a one dimensional harmonic oscillator
with different time steps ∆t. (a) Position drift of the Euler algorithm and (b)
energy drift for different timesteps. The figure is taken from Ref. [26].

Verlet Algorithm

The Verlet algorithm was invented in 1967 by Loup Verlet [30]. The method is
based on using discrete difference operators which is for the second derivative[

d2ri

dt2

]
n

:=
1

∆t

[
r n+1

i − 2r n
i + r n−1

i

]
, (3.7)
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where r n+1
i = r(t + ∆t). Inserting Eq. 3.7 into Newton’s equation of motion

(Eq. 2.1) yealds

r n+1
i = 2r n

i − r n−1
i +

∆t2 F n
i

mi
, (3.8)

where Fn
i is the force acting on the ith particle and mi is its mass. The velocities

are calculated using the central difference method

v n
i =

[
dri

dt

]
n

:=
r n+1

i − r n−1
i

2 ∆t
. (3.9)

The original Verlet algorithm has two major disadvantageous: (i) two num-
bers of very different size are added (the last term is multiplied by the small
number ∆t2) and (ii) the velocities are not calculated directly by this integra-
tion scheme, see Fig. 3.2 (a). (i) results in numerical rounding errors. In order
to avoid those errors a modified version of the original algorithm the so called
Verlet leapfrog algorithm [31] can be applied which is algebraically identical.
Different to the original algorithm, the velocities are calculated first and at time
tn+1/2, see Fig. 3.2 (b). Hence the velocitis are updated according to

v n+1/2
i = v n−1/2

i +
∆t F n

i
mi

, (3.10)

and the positions are afterwards determined as

r n+1
i = r n

i + ∆t v n+1/2
i . (3.11)

Since the time step ∆t is not squared anymore in this version of the Verlet algo-
rithm numerical rounding errors can be reduced. However, the probably most
often used version in MD simulation is the velocity Verlet algorithm [32]. It
shows long term stability in terms of rounding errors and all quantities includ-
ing the velocities are calculated at the same time. Solving Eq. 3.9 for r n−1

i and
substituting the result into Eq. 3.8 yields

r n+1
i = r n

i + ∆t v n
i +

∆t2 F n
i

2mi
. (3.12)

Solving this equation for v n
i and adding the corresponding expression for v n+1

i
(by substituting n with n + 1) results in an expression for the velocity which is
not dependent on the position update:

v n+1
i = v n

i +
(F n+1

i + F n
i )∆t2

2mi
. (3.13)
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In this work all simulations were performed with the velocity Verlet algorithm
with a timestep of ∆t = 0.01. Further to the above mentioned advantageous
and which are generally true for all three different Verlet integration schemes
are:

• robustness with respect to the time step ∆t,

• time reversibility,

• conservation of the phase space volume i.e energy conservation.

Even tough the algorithm described above shows very good properties, exact
calculations of single trajactories in an N-body system are not possible. Even
small numerical rounding errors result in trajectories which differ tremendously
from its correct ones. This general problem of chaotic systems is called Lya-
punov instability [33]. However, MD calculations give still representative re-
sults since for evaluations averages over time are calculated.

Figure 3.2: Graphical depiction of the different variants of the Verlet algorithm:
(a) Original Verlet algorithm, (b) Leapfrog Verlet algorithm and (c) Velocity Ver-
let algorithm. The figure is according to Ref. [26].

3.3 Boundary Conditions

In MD simulations only a small number of particles can be represented. In order
to avoid artificial surface effects, caused by particles which are not surrounded
by other particles in any direction, usually periodic boundary conditions (PBC)
are introduced, which enable to simulate bulk systems. The cubic simulation
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box is repeated in all 26 directions, see Fig. 3.3 (a) for a two dimensional scheme,
containing duplicates of each particle. If a particle i leaves the original simula-
tion box at one side, one of its images i′ enters on the opposite side. This is
done by adding or subtracting multiples of the box length L to the x,y or z-
coordinate. Duplicating the simulation box in all 26 directions requires a lot of
working storage. Instead, the simulation box can be devided into subcells as
described in Sec. 3.4 and only the outer subcells are duplicated into so-called
ghost cells i.e. in a layer of subcells surrounding the simulation box.
For all potentials described in Sec. 2.3 a cut-off radius was introduced. Not
only speeds this up the simulation but it does also prevent particles to interact
with its ghost. However, long range potentials such as the Coulomb potential
usually obey no cut-off radius. Therefore, for long-range forces only energy
contribtions are taken into account of particles which are within a cutoff radius
of LB/2, where LB is the box length. This so called minimum image convention
prevents that particles interact with its image and each particle interacts with at
most (N − 1) other particles.
In order to speed up the formation of flat membranes and vesicles reflecting
boundary conditions were applied instead. This results in a faster clustering
since particles which are reflected move towards the center of the simulation
box. The reflecting boundary conditions are implemented in the following way:
first it is checkt wheter the new position ri is within the open interval (0.5σ, L−
0.5σ). If xi < 0.5σ the reflected positon is x′i = −xi + σ and if xi > L −
0.5σ the reflected position is x′i = 2L − xi − σ and the new velocity is v′xi

=
−vxi . These boundary conditions are correspondingly applied to the y- and z-
direction. A graphical depiction of the reflecting boundary conditions can be
found in Fig. 3.3 (b).

3.4 Search Algorithms

The force calculation takes place in the inner most loop. Therefore, with the as-
sumption that each particle i interacts with all particles j 6= i, N(N− 1) force cal-
culations are performed, see Fig. 3.4 (a). The following description of improv-
ing computational efficiency with respect to force calculation follows Ref. [34].
However, since all forces are truncated at a certain radius rmax most of the forces
are zero anyway. Hence, a calculation of all N(N − 1) interactions is computa-
tionally inefficient. In order to gain computational efficiency the simulation box
is divided into subcells of length rmax. Only particles interact with each other
which are either in the same subcell or in neighbouring cells, see Fig. 3.4 (b),
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Figure 3.3: (a) Schematic depiction of periodic boundary conditions in two di-
mensions. If one particle leaves the simulation box on one side, one of its im-
ages enters the box on the oposite side. The figure is taken from Ref. [34]. (b)
Graphical depiction of the reflecting boundary conditions which were applied.

hence, the force acting on particle i is

Fi = ∑
cell m

m∈Ω(n)

∑
j∈all particles in cell m

i 6=j

Fij, (3.14)

where Ω(n) denotes all neigboring cells of cell n as well as the cell itself. Al-
though this reduces force calculations significantly only about 4π

81 ≈
1
6 are in-

teractions with non-zero contribution. Further improvement is introduced by
Verlet lists [30]. A list is created which only contains particles rmax + rskin = |r|,
see Fig. 3.4 (c). Hence, only force calculations of particles within this list are cal-
culated. The additional radius rskin is introduced to include also particles in the
list which potentially interact in the next few time steps. On the one hand this
raises the computational effort but on the other hand the list is valid for several
time steps, typically between 5 to 15, depending on size of rskin. Using such Ver-
let lists reduces the computational effort from O(N2) to O(N). The sumulations
performed in this work used Verlet list with a rskin = 0.4 and subcells of size
rmax = rcut + hc.
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Figure 3.4: Force calculation with Verlet lists: (a) Each particle interact with each
other what is not computationally preferable. (b) Division into subcells: Only
forces between particles in the subcell and neighbouring cells are calculated. (c)
Verlet lists: Only froces between particles with a distance |r| < rmax + rskin are
calculated. The figure is taken form Ref. [34].

3.5 Limitations

Despite the MD technique has some unique advantages, especially the insight
into the dynamic behaviour of systems, it has its limitations. In the following
list some of the most important limitations are discussed [26].

• In order to simulate bulk properties often artificial boundary conditions
are introduced. The usage of a too small simulation box can cause artificial
spatial correlations in too small systems.

• Most of the potentials, described in Sec. 2.3 are cut off at a certain distance
to improve computational efficiency. Therefore, long range interactions
such as van der Waals interactions are not taken into account with arbi-
trary precision.

• Although certain quantum mechanical interactions are taken into account
implicitly, e.g. Pauli repulsion in the LJ-(6-12) potential, the particles move
according to classical Newtonian mechanics. Hence, certain quantum
mechanical effects, such as chemical reactions where covalent bonds break
or form cannot be simulated.

• Computational power increased enormously during the past decades. How-
ever, MD simulations on single CPUs are still restricted to a few hundreds
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of thousands of particles and to a few microseconds. Hence, MD simula-
tions are restricted with respect to the time and length scale.
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4. Measurements

Despite a great deal of information visual inspection gains, it is important to
quanify the results of simulations. Several analyzing methods were applied to
different systems depending on the quantity which was of most interest. Quan-
tifying only lipid and hybride systems is based on the radial distribution func-
tion (RDF). In this work, systems regarding the interaction between amphiphilic
copolymers and vesicles is referred to as hybrid systems. Several other interest-
ing system specific quantities were also evaluated for hybride systems such as
the radius of gyration of parts of the polymers. The numerical evaluation of
pure amphiphilic copolymer systems required a cluster recognition algorithm
since several types of clustering were observed. With the analyzing methods
presented in this section, several interesting results could be observed which
are presented in Sec. 5.

4.1 Radial Distribution Function

The RDF describes how the density of a systems varies as a function of distance
from the center of mass (CM):

RDF(δr) =
3

4πδr3 n(δr), (4.1)

where n(δr) is the number of monomers in a discrete shell of a sphere of width
δr. The center of this sphere is given by the CM which is calculated in the
following way:

RCM =
1
N

N

∑
i=1

ri. (4.2)

Hence, the RDF is a Gaussian-shaped curve for hollow vesicles, see Sec. 5.1.

35
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4.2 Cluster Recognition

For the evaluation of the clusters observed in the study, where we investi-
gated a gel network of amphiphilic copolymers, see Sec. 5.2, two different meth-
ods were used. There are a lot of clustering algorithms available such as k-
means [35], hierarchical clustering methods [36, 37, 38] or density based meth-
ods. The difficulty was to find a cluster recognition algorithm which detects
two connected clusters as two separate clusters and the bridge inbetween as
noise, see Fig. 4.1 (a). In the first method, the simulation space was subdived
into subcells which were, depending on the density of the sourrounding cells,
either full or empty [39]. The density of each cell was calculated as

ρcell(k) =
Ncell(k)
Vcell(k)

, (4.3)

where Ncell(k) was the number of particles and Vcell(k) was the volume of the
kth cell. Then a weighted density of each cell over the sourrounding cells was
calculated defined as

ρ̄cell(k) =
1

35

(
9ρcell(k) + ∑

k
ρcell(k + δk)

)
, (4.4)

where the sum was performed over the 26 sourrounding neighboring cells. For
the boxsize the cut-off radius rc =

6
√

2 of the WCA potential was chosen. A cell
was defined as filled or empty if ρ̄cell(~k) > ρmin or ρ̄cell(~k) < ρmin, respectively.
With a value of ρmin = 0.75 in all systems no bridges were observed, see Fig. 4.1
(c). Afterwards, in order to recognize the clusters, a Density-Based Spatial Clus-
tering of Applications with Noise (DBSCAN) [40] algorithm was applied. The
parameters of this algorithm were chosen in a way that no noise was recog-
nized.
Choosing the parameters of the DBSCAN algorithm in a certain way, this algo-

rithm was able to detect the bridges between the clusters as noise, see Fig. 4.1
(b). The DBSCAN algorithm works in the following way: A fixed radius r ar-
round each particle is scanned. If a minimum number of other particles Nmin
is within this range, the particle is assigned to a cluster otherwise it is defined
as noise. By choosing r = 1.2 and Nmin = 3, only the DBSCAN algorithm was
able to detect the bridges as noise. In order to compare the two methods i.e. the
cell based method with DBSCAN and DBSCAN only, the number of detected
particles was compared. It could be observed that the DBSCAN algorithm was
able to correctly assign more particles to a cluster than the cell based variant, see
Fig. 4.2. The latter detected less particles due to the fact that particles at the outer
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Figure 4.1: Cluster recognition methods: (a) Original system showing only hy-
drophobic particles with connected clusters. (b) Cluster recognized with the
DBSCAN method. (c) Cluster recognized with the cell based method. Here,
the hydrophobic particles of the polymer are presented in yellow. In all other
snapshots they are presented in blue.

edge of the clusters have a too low density in the sourrounding computational
cells so that the cells were marked as empty. One disadvantage the DBSCAN
method turned out to be the fact that this algorithm false detects many small
clusters at the beginning of the simulation. However, the advantage of the DB-
SCAN algorithm was that it was able to detect more particles in the clustered
state. Therefore, the following evaluations of cluster formation, as shown in
Sec. 5.2, were performed with this algorithm.

4.3 Penetration Rate

Measuring the penetration of polymers into the membrane was based on the
RDF of the lipids. If the lipids formed a vesicle, the RDF showed a Gaussian-
shaped peak, whose position on the x-axis showed the radius of the vesicle and
its width indicated the thickness of the membrane. Detecting penetrated poly-
mers worked in the following way: First, the standard deviation of the RDF
was calculated. Then the RDF of the polymers was calculated with respect to
the center of mass of the lipids. If one monomer was below the threshold of
the standard deviation of the Gaussian-shaped peak, a polymer was defined as
penetrated, see Fig. 4.3. The main disadvantage of this evaluation procedure
was that it works only for perfectly shaped vesicles due to the fact that the RDF
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Figure 4.2: Ratio of detected particles with the different cluster algorithms: cell
based method and DBSCAN.

had to be Gaussian-shaped. However, since the interaction of polymers was
evaluated only for perfectly shaped vesicles this procedure worked very well.
Different other quantities were evaluated depending on the topology of the
copolymers. In hydbrid systems conaining amphiphilic star polymers not only
the penetration rate of the molecules was calculated but also the penetration
rate of the arms. For systems including the amphiphilic bottle brush copolymer
with a hydrophobic backbone and hydrophilic arms, the mean squared radius
of gyration and the end to end distance of the arms was calculated. The radius
of gyration of one arm was

〈
R2

g

〉
=

1
N

Nlength
arm

∑
i=1

〈
(ri −RCM)2

〉
, (4.5)

and its mean squared end to end distance was defined as

〈
R2

e

〉2
=
〈
(rNarm − r1)

2
〉

. (4.6)

This calculation was performed seperately for penetrated and non-penetrated
molecules and allowed to compare the spacial extrension of the arms.
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Figure 4.3: Determination of the penetration rate. If one hydrophobic particle
of an arm of a star or a backbone of a bottle brush polymer type A is below the
threshold, the polymer or the arm is considered to have penetrated the mem-
brane.
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5. Results and Discussion

In this chapter, three different studies, performed in this work, are presented.
In a first part, the search for optimal parameters which lead to hollow spheri-
cal vesicles is presented. Moreover, findings of other interesting self-assembled
structures such as vesicle-in-vesicle are shown. Before studying the interaction
of the vesicles with amphiphilic polymers, in a second part, a study is presented
where the self-assembly of amphiphilic copolymers was investigated. The dif-
ferent polymer topologies showed very different cluster formation. Especially
the bottle brush polymer with a hydrophobic backbone and hydrophilic arms
showed intersting self-assembled structures such as vesicles, membranes and
connected clusters. The last part presents the interaction of vesicles with am-
phiphilic copolymers. Penetration of the hydrophobic parts of the polymers
was observed and different penetration rates were determined, which strongly
depended on the polymer topology.

5.1 Vesicle Formation

Studying the interaction of amphiphilic copolymers with vesicles gains more
information than the study of flat membranes, since vesicles are closer related
to biological systems in nature. However, the self-assembled formation of vesi-
cles is more complex than of flat membranes. This complexity arises from the
enormous parameter space and the fact that vesicles occure only in a narrow
parameter range. Therefore, in this section, a parameter study regarding the
formation of vesicles is presented. All parameters which were tested are shown
in Table 5.1. For each combination of parameters only one simulation of a sin-
gle system was performed and equllibrated over 1.000.000 integration steps.
Although there are no statistical results over an ensemble of systems, several
well distinguishable forms of self-assembly could be observed.

For T = 1.5 in combination with hc = 1.5 no clustering of the lipids was
observed. This is in agreement with Ref. [14] where the same software with
the same parameter combination showed no cluster formation either. This can

41
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Table 5.1: Parameters which where tested for the vesicle formation: tempera-
ture T, hydrophobic attraction hc, system size Nlipid, density ρ and the bending
constant κBEND.

T 1.0 1.5
hc 1.5 1.8
Nlipid 1000 5000 10000
ρ 0.05 0.1 0.15 0.2
κBEND 0 1 2 10

be explained with a strong random fluctuation of the particles due to the tem-
perature and the low range of hydrophobic attraction. For all other parameter
combinations, phase diagrams according to visual expection were created. The
higher the number of lipids in the simulation, the more different forms of self-
assembling could be differentiated.
For systems containing 1000 lipids, membranes and vesicles were observed, see
Fig. 5.1. At temperature T = 1.0 and a hydrophobic attraction range of hc = 1.8,
membrane clustering was observed for a bending constant κBEND ≥ 1.0 and
density ρ ≤ 0.1. For the remaining parameter range at the same temperature
and hydrophobic attraction range, vesicular clustering was observed. Similar
results can be found for other combinations of temperature and hydrophobic
range, see Appendix Fig. A.1 and A.2. The figures in the appendix sometimes
show a structure referred to as undefined clustering. In those cases a cluster for-
mation could be observed but it was not well distinguishable.

For larger systems (Nlipid = 5000 and Nlipid = 10000), more different forms
of self-assembly were identified. Besides membrane and vesicle formation,
membrane-in-vesicle, vesicle-in-vesicle and vesicular clustering was observed.
The latter is referred to as the formation of serveral, smaller vesicles. Figure 5.2
shows the phase diagram of a system with Nlipid = 5000 at temperature of
T = 1.0 and a hydrophobic attraction range of hc = 1.8. At low density ρ ≤ 0.1
and κBEND < 10, either vesicular clustering or vesicles were found. At densities
ρ ≥ 0.15 always one large vesicle was found which was hollow at κBEND = 0, or
enclosed a membrane or another vesicle at higher bending constants. Further
results of other combinations of the temperature T and hydrophobic hc range
can be found in the Appendix in Fig. A.3 and A.4.

The formation of hollow vesicles with a size of Nlipid = 10000 was observed
only at temperature T = 1.0 and a hydrophobic range of hc = 1.8, see Fig. 5.3.
Similar to the systems with Nlipid = 5000, membranes, vesicular clustering or
hollow vesicles could be observed for densities ρ ≤ 0.1. Systems with higher
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Figure 5.1: Phase diagram of the bending strength κBEND and density ρ at fixed
temperature T = 1.0 and hydrophobic range hc = 1.8 of a system with Nlipid =
1000 lipids.

densities showed vesicles enclosing vesicles or membranes. More results of
other combinations of themperature T and hydrophobic attraction range hc and
the system size of Nlipid = 10000 can be found in Appendix Fig. A.5 and A.6. In
general, formation of hollow vesicles was found in a narrower parameter range
the larger the system size was.

In order to quantify the results observed by visual inspection, the radial den-
sity function (RDF) was evaluated for the different forms of self-assemby. Fig-
ure 5.4 shows the RDF of vesicles with a different number of lipis (Nlipid =
1000, 5000 and 10000). Corresponding snapshots are shown in Fig. 5.7. As ex-
pected, the RDF shows a Gaussian-like shape, since no particles are inside the
vesicle and none outside. However, the largest system (black line) shows a kink
at the outer side of the line. This can be explaned by a membrane flake which
is close to the vesicle outside of it which can be seen by visual inspection, see
Fig 5.7 (b). The position of the peak on the x-axis determines the radius of the
vesicle and its width determines the thickness of the membrane. The larger the
number of lipids involved in forming a vesicle is, the larger is the radius of the
vesicle . The radius of the vesicles tends to increase linearly with the system
size. The thickness of the vesicle membrane is independent of the system size,
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Figure 5.2: Phase diagram of the bending strength κBEND and density ρ at fixed
temperature T = 1.0 and hydrophobic range hc = 1.8 of a system with Nlipid =
5000 lipids.

because it depends on the length of the lipids rather than on the number of
lipids.

Not only vesicular clustering could be quantified by the RDF but also other
forms of clustering such as vesicle-in-vesicle, membrane-in-vesicle or mem-
brane formation, see Fig. 5.5. Corresponding snapshots can be found in Fig. 5.6.
The vesicle in vesicle formation shows two very distinct peaks. Hence, the two
vesicles are completely separat. The membrane inside the vesicle shows also
two peaks: one very close to the center of mass and one at the same position
as the other vesicles. The first peak shows the membrane inside the vesicle
whereas the second peak is due to the vesicle itself. Membrane flakes show
a broad peak extended over the whole x-axis. Evaluating the same types of
clustering of a system of size of Nlipid = 5000 shows that the outer vesicle in
both cases, with a membrane and another vesicle inside, as well as the hollow
vesicle, show exactly the same radius, see Appendix Fig. A.7. Besides the vesi-
cle formation, the vesicle-in-vesicle self-assembly is the most interesting result
since the double membrane structure occures in cell compartments such as in
mitochondria [41].
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Figure 5.3: Phase diagram of the bending strength κBEND and density ρ at fixed
temperature T = 1.0 and hydrophobic range hc = 1.8 of a system with Nlipid =
10000 lipids.

Figure 5.4: Radial density function of vesicles formed with a parameter set of
T = 1.0, hc = 1.8, ρ = 0.1 and κBEND = 2.
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Figure 5.5: Radial density function of different forms of clustering which were
observed of a system with Nlipid = 10000.

Figure 5.6: Snapshots of different forms of clustering of a vesicle with Nlipid =
10000 : (a) vesicle, (b) vesicle in vesicle, (c) membrane in vesicle and (d) mem-
brane flakes. The hydrophobic particles are presented in yellow and the hy-
drophilic heads are red colored. Parts of the vesicles are made transparent in
order to provide an inside view.
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Figure 5.7: Snapshots of vesicles with different size: (a) Nlipid = 1000, (b)
Nlipid = 5000 and (c) Nlipid = 10000. The hydrophobic particles are represented
in yellow and the hydrophilic heads are in red. Parts of the vesicles are made
transparent in order to show the hollow space inside.

5.2 Amphiphilic Copolymers

Before studying the interaction of vesicles with amphiphilic copolymers, first
the clustering behaviour of large amphiphilic copolymer networks was investi-
gated. Each tested system was composed of 100 polymers. The polymers can
be divided into three different topologies: Stars with a hydrophilic core and
hydrophobic arm ends, bottle brush polymers with a hydrophobic backbone
and hydrophilic arms and bottle brushes which were partwise hydrophobic,
see Sec. 2.1. For all topologies, several parameter sets were simulated and each
simulation ran for 2.000.000 integration steps. Due to the fact that the parameter
set was too large to evaluate all systems numerically, only those systems were
evalueted which showed vesicle formation in the study of the self-assembly of
lipids, see Sec. 5.1. Hence, temperature T = 1.0, a density of ρ = 0.1 and a
hydrophobic attraction of hc = 1.8 were chosen for a detailed nummerical eval-
uation. Afterwards, the cluster formation was evaluated with the clustering
algorithm described in Sec.4.2. Two different aspects are covered with this eval-
uation. On the one hand, we present in the following section static evaluations
which give information about the clustered state; on the other hand, the mean
squared radius of gyration of all clusters over time yields information about the
dynamics of cluster formation.
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Star Polymers

The parameter space which was simulated for this polymer type is shown in
Table 5.3. The parameters which were evaluated numerically are presented in
bold. The length of the arms of the stars was set constant to Nlength

arm = 30.

Table 5.2: Parameters which where tested for the cluster formation: temperature
T, hydrophobic attraction hc, hydrophobicity Nhydrophobic, functionality f and
density ρ.

T 1.0 1.5
hc 1.5 1.8
Nhydrophobic 4 10
f 4 9 16
ρ 0.05 0.1 0.15 0.2

The evaluation of the mean squared radius of gyration of the different clus-
ters showed that the larger the hydrophobic part Nhydrophobic was, the larger but
fewer clusters emerged, see Fig. 5.9. This behavour can be explained by the fact
that for a larger hydrophobic part the probability is larger to form a cluster with
other hydrophobic particles. This effect can also be seen by visual inspection as
shown in Fig. 5.8. Stars with higher functionality f also show more clusters but
with similiar size compared to their couterparts with lower functionality. The
explanation for this observation is the increased steric effects in the center of the
star with increased functionality f . Hence, the higher the functionality is, the
harder it is for the arms to bend in one direction, and therefore the harder the
formation of large clusters is; despite the system containing more hydrophobic
particles. This effect should be enhanced the shorter the arms are and should
vanish with longer arms.
The observation described above could also be validated with the pair corre-
lation function, see Fig 5.10. Star polymers with a larger hydrophobic part
Nhydrophobic show higher peaks and therefore more structure than those with
less hydrophobic particles. Also stars with different functionality f show dif-
ferences in the pair correlation function. The stars with highest functionalitiy
f = 16 show more structure than their lower counterparts.
Not only the sizes of the clusters was evaluated but also their shapes. In or-
der to evaluate the shape of a cluster the normalized principal moments or
shape factors [42] were evaluated. For spherical clusters the shape factors are
s fi ≈ 1/3 whereas for rod like clusters s f3 = s f2 = 0 and s f1 = 1. In Fig. 5.11
the shape factors as well as the radius of gyration of each cluster is shown for
a system consisting of stars with a functionality of f = 16 and a hydrophobic-
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ity of Nhydrophobic = 10. While smaller cluster show deviations from a spherical
shape, larger cluster tend to be almost perfectly spherically shaped. This be-
haviour was observed for all systems with star polymers.
Figure 5.12 shows the evolution of the cluster formation over time. Each timestep
shows the mean squared radius of gyration of all clusters. The size of the clus-
ters over time shows a logarithmic growth. At the beginning, the clusters are
emerging fast an then only grow slowly over time.
These results show that the cluster formation depends on the one hand on the
functionality f and on the other hand on the number of hydrophobic particles
at the end of the arms.

Figure 5.8: Snapshots of an amphiphilic star polymer network with functional-
ity f = 16: (a) and (b) hydrophobicity Nhydrophobic = 4; (c) and (d) hydrophobic-
ity Nhydrophobic = 10. The hydrophobic particles are presented in blue whereas
the hydrophobic particles are grey.
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Figure 5.9: Static evaluation of the star polymer networks. The different clusters
and their squared radius of gyration.

Figure 5.10: Pair correlation function of the star polymer networks.



5.2. AMPHIPHILIC COPOLYMERS 51

Figure 5.11: Evaluation of the shape factors of the clusters of one star polymer
network with a functionality of f = 16 and a hydrophobicity of Nhydrophobic =
10.

Figure 5.12: Growth of the star polymer network over time.
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Bottle Brush Type A

This type of bottle brush polymer showed very different forms self-assembly.
Vesicular and membrane-like structures as well as clusters connected through
the hydrophobic backbone could be observed, see Fig. 5.13 and 5.17. The self-
assembly strongly depended on the polymer topology, especially on the length
and number of hydrophilic arms. In Table 5.3 the different parameters are pre-
sented and those which were evaluated numerically are bold. The arms were
always equally distributed attached to the backbone whose length was set con-
stant to Nbackbone = 100. As elucidated above, due to the large parameter space
not all parameter combinations were evaluated numerically.

Table 5.3: Parameters which where tested for the cluster formation: temperature
T, hydrophobic attraction hc, number of arms Narms, arm length Nlength

arm and
density ρ.

T 1.0 1.5
hc 1.5 1.8
Narms 10 50
Nlength

arm 5 30
ρ 0.05 0.1 0.15 0.2

Like for the star polymers for this polymer network, static as well as eval-
uations over time were performed. The size of the different clusters depended
strongly on the topology of the polymers. While polymers with short arms
formed a few, small clusters, those with long arms showed many small clusters,
see Fig. 5.14. Also the number of arms influenced the emergence of clusters.
Low grafting density, hence only a few arms are attached to the backbone, re-
sulted in larger clusters than high grafting density. This observation can be
explained by a shielding effect of the hydrophilic arms. The more arms or the
longer they are, the more the hydrophobic backbone is shield from interactions
with backbones of other polymers. This observation is also validated by the pair
correlation function, see Fig. 5.15. Polymers with low grafting density or short
arms show higher and more peaks and therefore more structure than those with
high grafting density or long arms.
The evolution of the cluster formation over time showed that the clusters grow
much faster in the beginning with bottle brush than with star polymers, see
Fig. 5.12 and 5.16.
Vesicular formation was observed at higher densities ρ > 0.1 and only for short
arms Nlength

arm = 5 at low grafting density. In Fig. 5.17 the RDF of a vesicle is
presented. The Guassian-shaped peak and therefore the vesicle is much thicker
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than the vesicles formed by lipids due to the fact that the number of hydropho-
bic particles is much larger. Furthermore, the RDF shows that the space in-
side the hollow vesicle, is much smaller than in lipid vesicles. A larger space
can be expected when simulating either more or shorter amphiphilic polymers.
The results presented for this polymer type showed very different forms of self-
assembly strongly depending on the individual parameter combinations. More-
over, a shielding effect could be observed caused by the hydrophilic arms.

Figure 5.13: Snapshots of the diffent cluster formations which were evaluated:
(a) Narm = 10, Nlength

arm = 5; (b) Narm = 10, Nlength
arm = 30; (c) Narm = 50,

Nlength
arm = 5; (d) Narm = 50, Nlength

arm = 30. The snapshots show the clusters of
the hydrophobic part. Corresponding snapshots also including the hydrophilic
part can be found in the Appendix in Fig. B.3.
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Figure 5.14: Static property of a bottle brush polymer network. The differ-
ent clusters and their corresponding mean-squared radius of gyration are dis-
played.

Figure 5.15: Pair correlation function of bottle brush polymer networks.
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Figure 5.16: Time evolution of a a bottle brush polymer network. Time ver-
sus the mean-squared radius of gyration of the clusters. The snapshots show
one polymer stretched at the beginning of the simulation and another one after
cluster formation has started. Hydrophobic parts are presented in yellow color
whereas the hydrophobic arms are displayed in red color.

Figure 5.17: RDF of the vesicle formation of polymer type A and a correspond-
ing snapshot. Only a part of the vesicle is presented in order to allow a view
inside. In yellow (hydrophilic) and red (hydrophobic), one bottle brush poly-
mer is presented in order to show a possible arrangment inside the vesicle, as
observed in our simulations.
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Bottle Brush Type B

Simulations of bottle brush polymer type B were performed for three different
fractions of hydrophobicity. Type B1 is referred to a bottle brush polymer where
half of the polymer is hydrophobic (backbone and arms) and the other part
hydrophilic. For type B2 and type B3 the ratio of hydrophobicity is 1/3 and 2/3
respectively. Table 5.4 shows the parameter space which was simulated. Due to
the fact that the parameter space was to large in order to evaluate all systems
numerically only the values in bold were evaluated numerically.

Table 5.4: Parameters which where tested for the cluster formation: temperature
T, hydrophobic attraction hc, number of arms Narms, arm length Nlength

arm and
density ρ.

T 1.0 1.5
hc 1.5 1.8
Narms 10 50
Nlength

arm 5 30
Hydrophobic ratio 1/3 1/2 2/3
ρ 0.05 0.1 0.15 0.2

Despite polymer type B has a similar topology to polymer type A, neither
vesicular nor membrane formation was observed by visual inspection. Only
connected and well distinct cluster formation was identified.
Polymer type B2 with a hydrophobic ration of 1/3 shows a similar clustering
behaviour as bottle brush type A. Bottle brush polymers with a low grafting
density and short arms show a few but rather large clusters whereas high graft-
ing density and long arms emerge many small clusters, see Fig. 5.18. Evaluating
the mean squared radius of gyration over time validates the results of the static
evaluation. Fast cluster formation at the beginning can be observed, except for
the polymers with lowest grafting density Narm = 10 and with shortest arms
Nlength

arm = 5, see Fig 5.19. This topology shows a constant increase of the mean
squared radius of gyration with time and therefore a constant increase of the
size of the clusters.
A hydrophobic ratio of 1/2 shows a similar cluster formation to the ratio of 1/3.
Again, polymers with low grafting density and short arms tend to form fewer
but larger clusters, see Fig. 5.20. Comparing the polymers with Narm = 10 and
Nlength

arm = 30 with Narm = 50 and Nlength
arm = 5, approximately the same number

of clusters can be observed. However, the polymer with lower grafting density
shows a larger difference in the size of the clusters than those with higher graft-
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ing density. The dynamic evaluation shows as well a fast cluster formation at
the beginning, where the polymers with low grafting density and short arms
show in general a higher radius of gyration which validates the static evalua-
tion, see Fig. 5.21.
The polymer with highest hydrophobic ratio 2/3 shows the most interesting re-
sults regarding the number of clusters and its corresponding size. The polymer
with the lowest grafting density Narm = 10 and shortest arms Nlength

arm = 5 as
well as the polymer with the highest grafting density Narm = 50 and longest
arms Nlength

arm = 30 show more and smaller clusters than the two other poly-
mer topologies, see Fig. 5.23. However, the mean squared radius of gyration
shows the same systematic behaviour as for the other hydrophobic ratios. Poly-
mers with low grafting density and short arms show a higher mean squared
radius of gyration than polymers with high grafting density and long arms, see
Fig. 5.24.
Comparing the mean squared radius of gyration over time, regarding the differ-
ent hydrophobic ratios, polymers with higher hydrophobic ratio tend to form
larger clusters than polymers with a smaller hydrophobic part, see Appendix B
Fig. B.4, B.5 and B.6. The polymer with the highest grafting density Narm = 50
and the longest arms Nlength

arm = 30 shows an exception in this behaviour. Not
the polymer with the highest hydrophobic ratio 2/3 shows the largest radius of
gyration but the polymer with a hydrophobic ratio of 1/2, see Fig. B.7.
The results of bottle brush polymer type B are not as systematic as for stars
and polymer type A polymers. Nevertheless, higher hydrophobic ratios tend to
form larger clusters and a great influence of the grafting density and the arm-
length could be observed. Other self-assembly formations such as vesciles and
membranes are expected to occure in systems containing shorter polymers with
a hydrophobic ration of 2/3, similar to that of lipids [4].
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Figure 5.18: Static property of the cluster formation of bottle brush polymers
with a hydrophobic ratio of 1/3: The different clusters and their squared radius
of gyration.

Figure 5.19: Time evolution of bottle brush polymers with a hydrophobic ratio
of 1/3: The mean radius of gyration over time.



5.2. AMPHIPHILIC COPOLYMERS 59

Figure 5.20: Static property of the cluster formation of bottle brush polymers
with a hydrophobic ratio of 1/2: The different clusters and their squared radius
of gyration.

Figure 5.21: Time evolution of bottle brush polymers with a hydrophobic ratio
of 1/2: The mean radius of gyration over time.
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Figure 5.22: Snapshots of bottle brush polymers type B with a hydrophobic ra-
tio of 1/2: (a) Narm = 10, Nlength

arm = 5; (b) Narm = 10, Nlength
arm = 30, (c) Narm = 50,

Nlength
arm = 5; (d) Narm = 50, Nlength

arm = 30. Presented are only the hydrophobic
parts. A figure also including the hydrophilic parts can be found in the Ap-
pendix in Fig. B.8.
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Figure 5.23: Static property of the cluster formation of bottle brush polymers
with a hydrophobic ratio of 2/3: The different clusters and their squared radius
of gyration.

Figure 5.24: Time evolution of bottle brush polymers with a hydrophobic ratio
of 2/3: The mean squared radius of gyration over time.
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5.3 Interaction of Amphiphilic Copolymers with Vesi-
cles

The interaction of vesicles with amphiphilic copolymers was studied with the
parameters of temperature T = 1.0, hydrophobic range hc = 1.8 and den-
sity ρ = 0.1. Three different bending strengths were applied to the lipids,
κ = 0.0, 1.0 and 2.0. Those parameters showed vesicle formation of a system
consisting of 5000 lipids. Only simulations with systems containing 5000 lipids
were evaluated since vesicle formation occured in almost all simulations. Sys-
tems consisting of 10000 lipids showed in almost all cases no self-assebly to vesi-
cles and therefore no statistical relevant ensemble could be provided for eval-
uations. Vesicles consisting of 1000 lipids were profen as too small so that the
interaction with amphiphilic copolymers resulted in its destruction. While the
lipids included a bending potential so that they are stretched, the amphiphilic
copolymers simulated here were fully flexible chains. Interactions of vesicles
with amphiphilic star and bottle brush polymers of type A were studied. Each
vesicle was sourrounded by 10 polymers. This number was tested in advance
and it was shown that a lower number of polymers results in too less interaction
and a higher number in the destruction of the vesicles. In this section first the
results of the interaction of star polymers is provided followed by bottle brush
polymers. Both polymer topologies showed that the penetration rate barely de-
pends on the stiffness of the lipids but rather on the polymer topology.

Star Polymers

The amphiphilic star polymers were composed of arms with a length of 30
monomers. The number of hydrophobic particles at the end of each arm was
either Nhydrophobic = 4 or 10 and the functionalities were f = 4, 9 and 16. For
each star topology five systems were simulated for 1.000.000 integration steps in
the prerun and equilibrated for the same number of integration steps in a pro-
ductive run where the interaction between the polymers and lipids was turned
on. At least three systems showed vesicle formation so that the results pre-
sented here show a statistical average of at least three systems. The penetration
rate of the arms strongly depends on the functionality of the star polymers, see
Fig. 5.25. In general the lower the functionality is, the higher is the penetra-
tion rate. An explanation for this observation is that the more arm a star has
the higher its density at the center is and the harder it is for the star to fold the
arms in one direction. Regarding the number of hydrophobic monomers it can
be observed that the penetration rate for less hydrophobic monomers tends to
be higher, especially for a functionality of f = 4. This bahaviour can also be
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seen if a bending strength of κ = 1.0 is applied to the lipids, see Appendix C
Fig. C.1. This observation can be explained by the fact that 4 hydrophobic
molecules fit exactly into the membrane bilayer whose hydrophobic part con-
sists of 4 monomers too. However, the gap between the two hydrophobic ratios
decreases with increasing functionality. If a stiffness is applied to the lipids the
difference in the penetration rate for higher functionality f = 9 and f = 16
vanishes, see Fig. 5.26. Corresponding snapshots of the simulated systems can
be found in Fig. 5.27. However, this observation has to be treated with caution
due to the fact that the ensemble contains at least only three systems and hence
the statistical error of the penetration rate is about ±0.5. Therefore, in order to
proof a dependency of the penetration rate and the lipid stiffness, ensembles
containing more systems should be evaluated. Nevertheless, the results have
profen a strong influence of the polymer topology regarding the penetration
rate, especially the functionality of the stars.

Figure 5.25: Penetration rate of star polymers with different functionality f and
hydrophobic ratio Nhydrophobic. The lipids of the membrane had no bending
strength i.e. κBEND = 0.
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Figure 5.26: Penetration rate of star polymers with different functionality f
and hydrophobic ratio Nhydrophobic. The lipids of the membrane had a bending
strength of κBEND = 2.
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Figure 5.27: Snapshots of the equilibrated systems after 1.000.000 integration
steps. Some of the hydrophobic parts of the star polymers have penetrated
the vesicle which is formed of 5000 lipids. (a) f = 4 and Nhydrophobic = 4;
(b) f = 4 and Nhydrophobic = 10, (c) f = 9 and Nhydrophobic = 4, (d) f = 9 and
Nhydrophobic = 10, (e) f = 16 and Nhydrophobic = 4, (f) f = 16 and Nhydrophobic = 10.
The lipids are presented in yellow (hydrophobic) and red (hydrophilic) color, re-
spectively, whereas the polymers are presented in blue (hydrophobic) and grey
(hydrophilic) color, respectively.
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Bottle Brush Type A

Bottle brush polymer type A was composed of a hydrophobic backbone and hy-
drophilic arms. The length of the backbone was set constant to 100 monomers
as well as the number of arms was set to 10 which was the lower grafting
density in the polymer network study, see Sec. 5.2. The reason for focusing
on polymers with low grafting density was the result of a pre-study which
showed no penetration for high grafting density. The length of the arms was
Nlength

arm = 0, 5, 10, 30 and 50 where an armlength of 0 is a full flexible hydropho-
bic linear chain which only consists of the backbone. Snapshots of the systems
can be found in Fig. 5.33. For each polymer topology an ensemble of ten systems
was simulated and at least seven systems showed vesicle formation so that the
results presented here show a statistical average of at least seven systems. The
prerun which ensured the self-assembly of vesicles ran for 1.000.000 integration
steps. The systems ran for 10.000.000 integration steps in the productive run to
increase the probability of penetration. In order to ckeck whether the systems
were equilibrated the energies examined. If the energy is fluctuating arround
a mean value, a system was considered to be equilibrated, see Fig. 5.28. The
potential energy is decreasing in the prerun of the simulation and after a few
thousand timesteps fluctuating arround a mean value. During the productive
run the potential energy is further decreasing due to the turned on interactions
between the lipids and the polymers and is again fluctuating after a few hunded
integration steps arround a mean value.
The penetration rate of the polymers showed that the longer the hydrophilic
arms are the harder it is for the polymer to penetrate the membane, indepen-
dent of the lipid stiffness κ, see Fig. 5.29 and 5.30. This observation can be
explained by a shielding effect of the hydophilic arms. The longer they are the
harder it is for the hydrophobic backbone to come close enough to the mem-
brane for hydrophobic attraction. Hence, the probability of hydrophobic attrac-
tion and therefore penetration decreases with increasing armlength. For arms
longer than Nlength

arm = 30 this effect saturates i.e there is barely any difference in
the penetration rate of Nlength

arm = 30 and Nlength
arm = 50. Therefore, it is expected

that even longer arms show a similar penetration rate. On the other hand the
case where no arms are attached to the polymer and only a hydrophobic linear
polymer is interacting with the vesicle, complete penetration of all polymers
could not be observed. An explanation for this observation is that the density
was relatively small and therefore the box was large so that some polymers at
the edge of the box never came close enough to the membrane in order to inter-
act with the vesicle. This effect should vanish running the simulation for even
more integration steps so that the polymers at the edge of the box have more
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time to get close enough to the vesicle to interact. Moreover, this could also
be used as a benchmark of the number of integration steps of further studies.
The number of integration steps in the productive run could be defined as the
number of integration steps it takes until all poylmers with armlength 0 have
penetrated the vesicle. Not only the penetration rate was evaluated but also
the mean squared radius of gyration of the arms over time. The arms of poly-
mers whose backbone penetrated the membrane were less extended than the
arms of the non-penetrated polymers, see Fig.5.31. This beviour was observed
independently of the stiffness of the lipids, see Fig.5.32. The difference of the
mean squared radius of gyration of the arms of penetrated and non-penetrated
polymers increased with increasing armlength. The reason for this observation
could be that the extention of the arms of penetrated polymers is restricted in
the direction of the vesicle since the arms cannot penetrate it.
The presented results show a strong dependency of the armlength and the pene-
tration rate due to a shielding effect of the hydrophilic arms. A correlation of the
stiffness of the lipids and the penetration rate could not be observed. Regard-
ing the mean squared radius of gyration of the arms a methodical difference
between penetrated and non-penetrated polymers could be observed.

Figure 5.28: The total, potential and kinectic energy over the time.
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Figure 5.29: Penetration rate of bottle brush polymer type A with different arm-
length. The lipids of the membrane had no bending strength κBEND = 0. For
the armlengths Nlength

arm = 0 and 5 error bars are shown.

Figure 5.30: Penetration rate of bottle brush polymer type A with different arm-
length. The lipids of the membrane had a bending strength of κBEND = 1. For
the armlengths Nlength

arm = 0 and 5 error bars are shown.
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Figure 5.31: Mean-squared radius of gyration of the arms of penetrated and
non-penetrated over time. No bending strength was applied to the lipids
(κBEND = 0).

Figure 5.32: Mean-squared radius of gyration of the arms of penetrated and
non-penetrated over time. A bending strength of κBEND = 2.0 was applied to
the lipids.



70 5. RESULTS AND DISCUSSION

Figure 5.33: Snapshots of bottle brush polymers penetrating a vesicle composed
of 5000 lipids: (a) Nlength

arm = 5; (b) Nlength
arm = 50; (c) Nlength

arm = 10; (d) Nlength
arm = 30.



6. Conclusion and Outlook

In this work, we performed three different studies. In a first study, the self-
assembly of lipids was tested for a large parameter space. The self-assembly
of amphiphilic copolymer gel-networks was investigated in a second study. In
a third study the interaction of amphiphilic copolymers with hollow vesicles
was explored. In the parameter study on the self-assembly of lipids, differ-
ent forms of self-assembly were found. Besides hollow vesicles the vesicle-in-
vesicle formation was the most interesting discovery since cell organells such
as mitochondria show a similar structures [43]. Because this formation could be
generated with high probability, further studies on that system could be of high
interest. Scanning a larger parameter range would gain more knowledge about
the self-assembled formations of lipids but is not possible due to computational
limitations in this work. Here, using machine learning techniques could rem-
edy so that only a small number of parameters is simulated and the remaining
parameter range is filled up by applying machine learning methods [44].
The polymer networks showed as well very different forms of self-assembly.
Besides well distinct clusters, connected clusters were observed. Moreover, for
bottle brush polymer type A, membrane-like and vesicle formation could be
observed. Vesicular formation could also be expected for bottle brush poly-
mer type B with other topologies regarding the length of the backbone and
the proportion of hydrophobicity [4]. To be more concrete, a shorter backbone
with short arms attached and a hydrophobic proportion similar to that of lipids
should result in membrane or vesicle formation choosing the right parameters
for the temperature and density. Such polymer vesicles are of high interest in
medical applications as drug carriers [45].
The interaction of amphiphilic copolymers with vesicles showed very interest-
ing results. The star polymers showed that the higher the functionality is the
less arms penetrate the vesicle due to steric effects at the center of the star.
Moreover, a dependency of the number of hydrophobic particles at the end of
the arms could be observed. The better the number matches with the number
of hydrophobic particles inside the membrane, the easier it is for the polymers
to penetrate. The penetration of bottle brush type A polymers showed a strong
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dependency on the armlength and a shielding effect of the hydrophilic arms
could be observed. Hence, the longer the arms are, the less the probability is
that a backbone comes close enough to interact with the membrane. Another
interesting observation was that the radius of gyration of the arms of the pen-
etrated polymers was always lower than that of non-penetrated polymers. In
further investigations it would be interesting to look at the stability of vesicles
if the polymer concentration is increased. With a higher polymer concentration
more penetration occure which could desabilize the vesicle and destroy it.
In conclusion, it could be shown that the interaction of membranes with am-
phiphilic copolymers strongly depends on the polymer topology. Therefore,
coarse-grained simulation studies give detailed insight into dynamic processes
of the interaction between biological membranes and amphiphilic copolymers.
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A. Vesicle Formation

Figure A.1: Phase diagram of the bending strength κBEND and the density ρ at
fixed temperature T = 1.0 and hydrophobic range hc = 1.5 of a system with
Nlipid = 1000 lipids.
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Figure A.2: Phase diagram of the bending strength κBEND and the density ρ at
fixed temperature T = 1.5 and hydrophobic range hc = 1.8 of a system with
Nlipid = 1000 lipids.

Figure A.3: Phase diagram of the bending strength κBEND and the density ρ at
fixed temperature T = 1.0 and hydrophobic range hc = 1.5 of a system with
Nlipid = 5000 lipids.
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Figure A.4: Phase diagram of the bending strength κBEND and the density ρ at
fixed temperature T = 1.5 and hydrophobic range hc = 1.8 of a system with
Nlipid = 5000 lipids.

Figure A.5: Phase diagram of the bending strength κBEND and the density ρ at
fixed temperature T = 1.0 and hydrophobic range hc = 1.5 of a system with
Nlipid = 10000 lipids.



82 A. VESICLE FORMATION

Figure A.6: Phase diagram of the bending strength κBEND and the density ρ at
fixed temperature T = 1.5 and hydrophobic range hc = 1.8 of a system with
Nlipid = 10000 lipids.

Figure A.7: RDF of different structures found in systems consisting of 5000
lipids.



B. Amphiphilic Copolymers

Figure B.1: Snapshots of star polymer networks: (a) f = 4 and Nhydrophobic = 4;
(b) f = 4 and Nhydrophobic = 10; (c) f = 9 and Nhydrophobic = 4; (d) f = 9 and
Nhydrophobic = 10.
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84 B. AMPHIPHILIC COPOLYMERS

Figure B.2: Snapshots of star polymer networks: (a) f = 4 and Nhydrophobic = 4;
(b) f = 4 and Nhydrophobic = 10; (c) f = 9 and Nhydrophobic = 4; (d) f = 9 and
Nhydrophobic = 10
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Figure B.3: Snapshots of a bottle brush polymer network type A: (a) Narm = 10
and Nlength

arm = 5; (b) Narm = 10 and Nlength
arm = 5; (c) Narm = 50 and Nlength

arm = 5;
(d) Narm = 50 and Nlength

arm = 30.



86 B. AMPHIPHILIC COPOLYMERS

Figure B.4: Mean-squared radius of gyration of the clusters over time of dif-
ferent hydrophobic ratios of a bottle brush molecule with Narm = 10 and
Nlength

arm = 5.

Figure B.5: Mean-squared radius of gyration of the clusters over time of dif-
ferent hydrophobic ratios of a bottle brush molecule with Narm = 10 and
Nlength

arm = 30.
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Figure B.6: Mean-squared radius of gyration of the clusters over time of dif-
ferent hydrophobic ratios of a bottle brush molecule with Narm = 50 and
Nlength

arm = 5.

Figure B.7: Mean-squared radius of gyration of the clusters over time of dif-
ferent hydrophobic ratios of a bottle brush molecule with Narm = 50 and
Nlength

arm = 30.
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Figure B.8: Snapshots of a bottle brush molecule type B2 which has a hydropho-
bic ratio of 1/3: (a) Narm = 10 and Nlength

arm = 5; (b) Narm = 10 and Nlength
arm = 5;

(c) Narm = 50 and Nlength
arm = 5; (d) Narm = 50 and Nlength

arm = 30.
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Figure B.9: Snapshots of a bottle brush molecule type B2 which has a hydropho-
bic ratio of 1/3: (a) and (e) Narm = 10 and Nlength

arm = 5; (b) and (f) Narm = 10 and
Nlength

arm = 5; (c) and (g) Narm = 50 and Nlength
arm = 5; (d) and (h) Narm = 50 and

Nlength
arm = 30.
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Figure B.10: Snapshots of a bottle brush molecule type B3 which has a hy-
drophobic ratio of 2/3: (a) and (e) Narm = 10 and Nlength

arm = 5; (b) and (f)
Narm = 10 and Nlength

arm = 5; (c) and (g) Narm = 50 and Nlength
arm = 5; (d) and

(h) Narm = 50 and Nlength
arm = 30.



C. Hybrid Systems

Figure C.1: Penetration rate of star polymers into vesicles made of lipids with a
bending strength of κBEND = 1.0
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Figure C.2: Penetration rate of bottle brush molecules into vesicles containing
lipids with a bending strength of κBEND = 1.0

Figure C.3: Mean-squared radius of gyration of the arms of penetrated and non-
penetrated bottle brush polymers. To the lipids of the vesicle a bending strength
of κBEND = 1.0 was applied.
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