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Neurons with High-Density Microelectrode Arrays

by Gustavo PRACK

Studying the animal nervous system and particularly the human brain reveals an as-
tonishing and most complex marvel of nature. Given its accomplishments – all aspects
of human culture, for instance – there is good reason for wanting to understand how
the brain and the rest of the nervous system work. The debilitating and costly effects
of neurological and psychiatric diseases add a further sense of urgency to this quest.
Parkinson’s disease is a progressive neurodegenerative disorder causing loss of motor
function due to degeneration of dopaminergic neurons on approximately 1 % of the
population above the age of 60. Why degeneration occurs remains unsolved and cur-
rently there is no cure. However, progress in stem cell biology provided new avenues
to study neurological disorders in patient-derived tissue. Moreover, advances in micro-
electrode array technology allows examination of electrically active cells at high spatial
and temporal resolution. Here, we apply high-density microelectrode arrays to exam-
ine the development of cellular- and network phenotypes of induced pluripotent stem
cell (iPSC)- and embryonic stem cell (ESC) lines. We compare iPSC-derived dopamin-
ergic neurons from a healthy subject, to an isogenic cell line carrying the early-onset
A53T α-synuclein point mutation. Moreover, we investigate the electrophysiological
consequences of the GBA1 deletion on ESC-derived dopaminergic neurons. Both mu-
tations are considered as major risk factors for Parkinson’s disease. Therefore, we
create a pipeline to characterize development of neuronal features at single cell- and
network level.
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1
Introduction

The exploration of molecular, cellular, systemic, behavioral, and cognitive features in
neuroscience, has revealed a stupendous biological machinery. Studying the nervous
system of humans and other animals, and in particular the cells and connectivity of
the human brain, has involved interdisciplinary collaborations between scientists from
various fields. Even though some of the cellular components of neurons are similar to
those of other organs, their quantity in the nervous system is remarkable. It is esti-
mated that the human brain contains 1011 neurons and perhaps three times as many
glial cells. Furthermore, the number of distinct cell types in the nervous system is
greater than in any other organ system which makes it possible to create such compli-
cated networks and sophisticated behaviours [1, 2, 3].
In the past years, progress has been achieved in immunohistochemistry, single cell ge-
netics, imaging and computational analysis. This facilitated identification of different
neuronal subtypes, description of their molecular constituents, interpretation of neural
coding, and characterization of functionalities in specific brain regions. Yet, many key
questions regarding communication within the nervous system remain unsolved since
the brain is a complex system and its activity runs in multiple temporal and spatial
scales, requiring a wide-ranging set of technologies to address these scales. Therefore,
innovations in experimental methods to observe, measure and analyze recorded brain
activity are needed to understand the brain’s complexity and increase our knowledge
of its functions.

In this introductory chapter, the functions of the cellular components located in the
nervous system will be briefly described and characterized in Sec. 1.1. Besides, Sec.
1.2 will outline the utility of microelectrode array technologies for the measurements
of electrical signals of nerve cells. Moreover, progress in stem cell research in the past
years will be introduced in Sec. 1.3, while demonstrating the advantages of embryonic
stem cells and induced pluripotent stem cells for studies in neuroscience.

1.1 Cellular Components of the Nervous System

Histological studies of the Spanish neuroanatomist Santiago Ramón y Cajal and sev-
eral successors led to the conclusion that the nervous system can be divided into two
categories [4, 5]. The nerve cells, or neurons, and glial cells or simply glia.
Neurons generate various types of electrochemical signals, which are the key elements
for transmitting and storing information in the brain. A schematic of a neuron is de-
picted in Fig. 1.1. Perhaps the most obvious morphological characteristics of neurons
is their extensive arborization- i.e. their axonal projection and dendrites, which both
arise from the neural cell body, or soma, that contains the cell nucleus. Dendritic
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branches are the primary targets for synaptic inputs from the axon terminals of other
neurons.

Figure 1.1: Cell morphology of a neuron. Axon with axon terminals
and dendrites arise from the soma which houses the nucleus. During
the myelination of the axon through Schwann cells in the PNS, gaps
between the myelin sheaths arise, which are called nodes of Ranvier.

In contrast, glia support neuronal functions such as electrical signals rather than gen-
erating them [6, 7]. Moreover, glia play a central role in the development of the adult
brain [8]. As essential contributors to the repair of a damaged nervous system, they
act as stem cells [9]. In brain regions where regeneration is necessary, glia promote
the regrowth of damaged neurons while preventing regeneration in regions where un-
controlled regrowth should be avoided [10].
In the mature nervous system, glial cells differentiate into three types, namely as-
trocytes, oligodendrocytes, and microglia cells. A major function of astrocytes, which
can only be found in the central nervous system (CNS), is maintaining homeostasis
at the synapse to regulating neuronal signaling [11]. Oligodendrocytes form a lami-
nated, lipid-rich sheath called myelin around axons, which has important effects on
the transmission speed of electrical signals. Since oligodendrocytes are also restricted
to the CNS, in the peripheral nervous system (PNS), the myelinating cells are called
Schwann cells, shown in Fig. 1.1. The uninsulated gaps between the myelin sheath,
also known as nodes of Ranvier, contain various ion channels, which, in vivo, play a
significant role in the regeneration of electrical signals. Finally, microglia are often
considered as macrophages in the CNS. They are primarily phagocytes removing left-
over of death cells from sites of injury or normal cell turnover. For the aim of this study
we particularly focus on the electrophysiological property of a neuron.

1.1.1 Electrogenesis of Membrane Excitability

Neurons are the origin of electrical signaling in the nervous system. Although neurons
are not intrinsically good conductors, they possess mechanisms that allow them to cre-
ate electrical signals based on the flow of ions across their plasma membranes [12, 13].
The differences in concentrations of specific ions across nerve cell membranes generate
electrical membrane potentials. Further, the membranes are selectively permeable to
some of these ions. In turn, the ion concentrations and permeabilities are regulated by
cell membrane proteins, as depicted in Fig. 1.2.
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Figure 1.2: Active transporters, ion channels and carriers are respon-
sible for ionic movements across the membranes. Transporters create
ion concentration differences by actively transporting ions against their
chemical gradients. Channels take advantage of these concentration
gradients, allowing selected ions to diffuse down their chemical gra-
dients. Carrier proteins transport molecules either passively through
diffusion, or via secondary active transport.

The ion concentration gradients are mostly established by proteins known as active
transporters, which actively move ions into or out of cells against their concentration
gradients [14]. The selective permeability of membranes is due to ion channels. These
are proteins that allow only certain kinds of ions to cross the membrane in the direction
of their concentration gradients [15]. Thus, channels and transporters work against
each other, and in so doing they can change the membrane potential. Carrier proteins
can transport ions and molecules either passively through facilitated diffusion, or via
secondary active transport.
One approach to study these electrical signals is to use an intracellular microelectrode
to measure the potential difference between the inside and the outside of the cell. A
typical microelectrode is a glass capillary, which is pulled to a very thin end and filled
with a good electrical conductor, such as a metal wire or a concentrated salt solution.
As soon as the microelectrode is inserted through the membrane of a neuron a negative
potential can be recorded, indicating constant voltage in the membrane of an inactive
neuron. This voltage, depicted as the dashed grey line in Fig. 1.3a, is called the resting
membrane potential. Depending on the type of neuron this value is typically between
-40 mV and -90 mV [16].
Electrical signals of neurons are caused by spontaneous activities to improve develop-
ment of the neural network, or due to responses to different stimuli, which change the
resting potential [17]. One example is the receptor potential, which is due to transient
activation of sensory neurons by an external stimulus, such as light, sound, or heat
[18]. These changes in potential are the first step in e.g. generating the sensation of
vibrations of the skin in the somatic sensory system. Another type of electrical signal
is associated with the communication between neurons at synaptic contacts. Activa-
tion of these synapses generate synaptic potentials, which allow the transmission of
information from one neuron to another [19]. Finally, neurons also generate a special
type of electrical signal that travels along their axons. This signal is called the action
potential (AP) [13, 16]. The intra- and extracellular waveforms of an AP are shown in
Fig. 1.3. Depending on whether the AP is measured with an intracellular- or an ex-
tracellular electrode, the signals obtained will look different. Intracellular electrodes
measure the changing membrane potential generated by ion fluxes of approximately
∆100 mV. In contrast, an extracellular electrode picks up the field potential (FP) gen-
erated by an AP of a neuron [20]. Hence, the amplitude is inverse due to the opposite
charge distribution on the membrane outside. Moreover, the recorded FP amplitudes
are significantly smaller ranging approximately between ∆10 µV and ∆1 mV.
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Figure 1.3: Schematics of an electrophysiological recording of an in-
tracellular AP (a) and an extracellular AP (b) as a function of time,
containing the different phases as the wave elongates through the axon
of a neuron.

APs are responsible for transmission of information within the nervous system to its
target organs. One way to induce anAP is the application of an electrical current across
the membrane. If the current lowers the membrane potential (hyperpolarization), no
AP is generated [21]. The same applies, if the delivered current increases the mem-
brane potential, without exceeding a certain level called the threshold potential [22].
These subthreshold responses of the membrane potential are referred to as passive
electrical responses. However, if a current is delivered in a way that the membrane
potential of the nerve cell becomes more positive than the threshold potential (depo-
larization), an AP occurs.

1.2 Microelectrode Array Technology in Neuroscience

A central aim of modern neuroscience is to understand the connectivity of neuronal
circuits and their physiological function. For this endeavour, electrophysiology has
been the method of choice due to its ability to capture a variety of neural phenomena,
ranging from the spiking activity of individual neurons to network dynamics among
populations of neurons [23, 24, 25]. Patch-clamp, as an example, can be used to mea-
sure currents flows through single ion channels in the cell membrane. The function
of single neurons is often investigated by directly measuring the intracellular voltage,
using patch-clamp or a sharp microelectrode. Although intracellular recordings are
very useful, their usage is often limited to only a few neurons per experiment [26]. On
the other hand, metal electrodes, integrated into large arrays, so-called microelectrode
arrays (MEAs), allow extracellular recordings via indirect measurements of larger cell
populations. MEAs enable long-term recordings of both local field potentials (LFPs)
and extracellular APs from a population of neurons at millisecond temporal resolution.
Some MEAs also allow the perturbation of neuronal activity using electrical stimula-
tion [27]. Therefore, MEAs have become an essential tool in basic and applied research,
enabling to progress from the observation of the electrical behavior of single neurons
toward the analysis of neural cell populations [28].

Fig. 1.4a illustrates the point-contact model of a neuron laying on the top of a sub-
strate integrated electrode in a MEA with its analogous electrical circuit [29]. Such
a model indicates that a tight seal between the neuron and electrode is needed to
measure extracellular APs from isolated neurons. The cell membrane is represented
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with an equivalent model based on the Hodgkin-Huxley model of the squid axon [30].
CM represents the capacitance across the neuronal membrane. The voltage-gated ion
channels (K for potassium and Na for sodium) are represented by non-linear conduc-
tance, gK and gNa , and the leak is shown as a linear conductance, gL. The rever-
sal potentials that drive the flow of ions are represented by EK , ENa , and EL. The
ion flow is shown by IK , INa , IL, and IC. The other elements are described in the
text. Vrec is the recorded voltage signal. Typical intracellular AP and extracellular
AP recordings are shown. The location of the scissors indicates where the “cut” can be
made to separate the neuron-electrode interface into two parts. For MEAs with a large
number of densely arranged electrodes, so called high-density microelectrode arrays
(HD-MEAs), it has been observed that signs of extracellular APs are also detected by
electrodes relatively distant from the neuronal source [31]. This model, generalized in
Fig. 1.4b, assumes that the MEA surface can be treated as an insulator separating the
neuron-electrode interface into two parts: fluid-side and metal side [32]. This is valid,
if the impedance on the metal-side seen by the electrodes is much larger than the fluid
impedance of all frequencies.
For the fluid side, it is assumed that the MEA surface is an insulating infinite plane
and the fluid a homogeneous isotropic medium [33, 34, 35]. Thus, the potential Ve at
any given electrode e can be given solved using the following equation:

Ve = 1
2πσ

∑ In

rr
. (1.1)

In represents the nth point current source and rn the distance between point source
and recording electrode, with n = 1, ..., N and N the number of individual point sources.
The distribution and decay of the signal over the MEA surface plane is highly corre-
lated with the distance of the signal source from the surface, making it possible to
estimate the distance between source and electrode.
For the metal-side, the input to the circuit is a low voltage source with the value cor-
responding to the potential resulting from the currents in the fluid. This voltage Ve
is connected to the effective electrode impedance Z′

e which consists of Rspread, Rm, Re
and Ce. Here, Rspread represents the current that spreads from the electrode into the
electrolyte. Re and Ce are the double layer resistance and capacitance respectively,
formed at the electrode-electrolyte interface. Rm is an additional resistance represent-
ing the metallic part of the microelectrode. The effective amplifier input impedance,
Z′

a, is connected in series to Z′
e, which includes the actual input impedance of the am-

plifier Za and the shunting paths to ground outside the amplifier (Rs and Cs) [33, 34].



Chapter 1. Introduction 6

Figure 1.4: Schematics of a MEA neuron-electrode interface. (a) The
classic point-contact model derived from Weis and Formherz [29]. (b)
Generalized neuron-electrode interface separating the problem into
upper-fluid-side and lower-metal-side This model is derived from [33,
34, 35]. Figure is taken from Obien et al. [32].

Electrophysiological recording and stimulation with HD-MEAs In Vitro, have been
used in a wide variety of neuroscience applications. Studies have recorded light-
induced retinal ganglion cell activity using HD-MEAs, and action potential in cortical
neurons [36, 31]. Additionally, data from acute slices of the cerebellum, cortex and
culture cardiomyocytes have been studied [37, 38, 39]. Also, there are now studies that
probed spontaneous and evoked electrical network activity of human induced pluripo-
tent stem cell (iPSC)-derived neurons grown on conventional- and HD-MEAs [40, 41].

1.3 Using Stem Cells to Study Neurological Disorders

Stem cells have become a promising research field with the potential to study and ef-
fectively address some of the most severe neurological disorders. Stem cells are cells
with the ability to generate identical cells for a lifetime through self-renewal and to
generate mature cells of a particular tissue through differentiation. They can be cate-
gorized into three main types of stem cells: Adult stem cells, embryonic stem cells and
induced pluripotent stem cells.

1.3.1 Adult and Embryonic Stem Cell

Adult stem cells are a rare population of cells, located in differentiated tissues such
as skeletal muscle, liver, bone marrow and brain [42]. They remain undifferentiated
in the tissue, but continuously self-renew [43]. Adult stem cells differentiate into a
limited number of mature cell types of the tissue of origin and are thus referred to
as multipotent. An important function is the replacement of cells that are lost due to
tissue turnover or injury, thus ensuring the maintenance of tissue homeostasis [44].
In contrast, embryonic stem cells (ESCs) are found in the blastocyst-stage of an early
embryo. ESCs have the ability to form any fully differentiated cell of the body, hence
denoted as pluripotent [45]. Pluripotent ESCs can be removed from the blastocyst and
maintained in their undifferentiated stage(s) in cell culture.
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1.3.2 Induced Pluripotent Stem Cell

In 2006, a major technological breakthrough in science and medicine was made. Us-
ing only four transcription factors, Takahashi and Yamanaka were able to generate
cells from mouse fibroblasts with a gene expression profile and developmental poten-
tial similar to ESCs [46]. These cells are referred to as induced pluripotent stem cells
(iPSCs). Just one year later, two research groups independently reported the genera-
tion of iPSCs from human fibroblasts [47, 48].
Evolving rapidly since 2007, human iPSC technology was a game changer for the fields
of stem cell biology and regenerative medicine, as well as the fields of disease modelling
and drug discovery. Compared with traditional cellular screens, the interest in phe-
notypic screening and the advantages of human iPSCs disease modelling in vitro are
becoming increasingly popular. It offers many advantages, such as their human origin,
easy accessibility, ability to differentiate into almost any cell type, expandability, pre-
vention of ethical confrontations related to human ESCs and the capability to develop
personalized medicine using patient-specific iPSCs. Consequently, iPSCs can provide
large quantities of disease-relevant cells that were previously difficult to access, such
as neurons. Since iPSCs, develop genetic variations among cell lines, data interpreta-
tion of disease-relevant phenotypes may still be complicated. However, modern genome
editing technologies enable the introduction of specific mutations into iPSCs in order
to evolve isogenic cell lines. [49, 50, 51]. Having similar genotypes, isogenic iPSC con-
trols are essential when modeling sporadic diseases, in which phenotypic differences
are expected to be small [52].

1.4 State of Research, Motivation and Aim

In this study, we will focus on cell lines carrying mutations considered as major risk
factors in Parkinson’s disease (PD). PD is a progressive neurodegenerative disorder
affecting more than 1 % of the population over 60 [53, 54]. Nevertheless, a severe dis-
ease type referred to as young-onset PD also exist in patients at an earlier age. Their
average life expectancy after diagnosis is 7 to 14 years [53, 54]. Common symptoms in
PD patients are tremor, shaking, rigidity and slowness at initiating a movement [53,
54]. Moreover, 1/3 of the patients suffer from non-motor symptoms including loss of
olfaction, depression and anxiety [55]. However, the causes of PD, and whether these
symptoms are directly linked to the disease remains unclear [56]. Though, motor dis-
orders are closely linked to damage and degeneration of dopaminergic (DA) neurons
of the nigrostriatal pathway [53, 54]. The loss of DA neurons in the brain could also
explain the loss of the olfactory sense, depression and anxiety. Affected DA neurons
develop protein aggregates of misfolded α-synuclein (α-syn) called Lewy bodies. Thus,
mutations in the alpha-synuclein gene (SNCA) are thought to play a major role in the
development of PD [57, 58]. Still, why particularly DA neurons are affected is still not
known and currently, there is no cure for PD.

In this MSc thesis project, we will probe human iPSC / ESC derived DA neurons using
HD-MEAs and study their development in vitro. We will demonstrate that HD-MEA
experiments are also useful to investigate the development of potential phenotypic dif-
ferences between human wild type and two mutant disease DA neuron cell lines.
In the first study, we compare the development of DA neuronal cultures, at the cellu-
lar and network level and compare these features between a healthy WT iPSC-line,
to an isogenic cell line carrying the A53T α-syn mutation. Therefore, we simultane-
ously recorded cellular activity from 1’024 electrodes using state-of-the-art HD-MEA
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technology and analyzed the data to conclude which features were most informative to
predict the phenotype [59].
For the second study, we demonstrated how a culturing medium affects spontaneous
cell activity which in turn influence the recording quality. Thus, we investigated the
inhibiting and activating effect of two different culturing media on network activity of
human derived ESC-lines with HD-MEA recording.
Furthermore, in a third study, we examined the electrophysiological impact of the
GBA1 gene knockout throughout cell development on-chip. We thereby verified that
the lack of this gene hinders proper creation of neuronal networks within a culture.
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2
Materials and Methods

In this section, we describe the methodology applied throughout all experimental pro-
cedures of this study First, we introduce the human stem cell derived neuronal cultures
used in this study (Sec. 2.1). Next, we outline the HD-MEA plating protocol and de-
scribe the required medium to culture them. In the following section, Sec. 2.2 we will
present the experimental set up with its corresponding hard- and software. In order
to study the development of neuronal cultures and potential phenotypic differences
between the wild type and the mutant cell line, we analyzed neuronal activity at the
single cell- and network-level. We therefore describe the pre-processed the HD-MEA
data (spike sorting) and explain, which quantitative metrics were used to characterize
neuronal cultures (Sec. 2.3).

2.1 Cell Cultures

Four different cell lines derived from two different cell types were investigated in three
different experimental series. In the first experimental series, we tested two commer-
cially available cell lines of iPSC-derived human midbrain floorplate DA neurons, co-
cultured with human iPSC-derived astrocytes in order to improve cell development.
The cells were differentiated in protocols licensed and adapted from the Lorenz Studer
lab (Sloan Kettering Institute, New York City) and industrialized for scale at FUJI-
FILM Cellular Dynamics, Inc. (FCDI) [60]. Fully differentiated wild type (WT) iCell®

DopaNeurons (>80 % pure midbrain DA neurons) with expression of relevant mid-
brain DA neuron markers were used as a control, exhibiting the relevant biology and
functionalities [61]. The disease type (DT) examined in the same series were MyCell®

DopaNeurons [62]. MyCell® DopaNeurons harbour the early onset mutation A53T in
the SNCA gene which is one of the most highly penetrant and widely studies mutations
linked to PD [63]. The A53T mutation renders α-syn more susceptible to aggregation
and accumulation, which are hallmark indicators of PD pathology [63]. As a support
for the neural tissue, iCell® Astrocytes were added to both cell lines [64].
For the second and third experimental series, two cell lines of genetically engineered
human ESC-derived neurons were provided by the lab of Professor Verdon Taylor
(Fedele et al. in preparation, Department of Biomedicine, University of Basel). The WT
was used as a control, however for the DT the GBA1 gene has been deleted (GBA1-/-).
The GBA1 gene encodes the lysosomal enzyme GCase which mediates the hydrolysis
of glucosylceramide and glucosylsphingosine to glucose and ceramide or sphingosine,
respectively. GBA1 mutations cause the lysosomal storage disorder Gaucher disease
(GD), and genome-wide association studies identified small nucleotide polymorphisms
in GBA1 as one of the strongest genetic risk factors for PD [65]. To generate fully differ-
entiated neurons, DA neuron progenitors were expanded in vitro following a standard
midbrain floor plate progenitor (mFPP) protocol with some modifications as, illustrated
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in Fig. 2.1 [66, 67]. After 20 days of expansion, the differentiating mFPP cells were
finally passaged in order to be plated on HD-MEA chips. The day on which the cells
were finally plated on the chip was referred to as day in vitro (DIV) 0.

Figure 2.1: Schematic diagram for efficient expansion of in vitro DA
neuron progenitors and final DA neuron maturation from human iP-
SCs. (a) In vitro DA neurons were generated using a standard mFFP
protocol with some modifications [66]. After 11 days of neuralization
and floor plate induction by adding signaling molecules such as SHH,
FGF8 and CHIR-99021, mFPPs were amplified by cell passaging and
maintained in culture for 3 - 4 weeks (6 passages in total as indicated
by the arrows P1 - P6). Image taken from Fedele et al. [67].

2.1.1 Cell Plating

To compare the electrical signaling across iPSC cultures and to study the development
of different cell lines, cells had to be plated on the HD-MEA surfaces. Below, we provide
the numbers and plating densities per chip in Tab. 2.1. For the first and third exper-
imental series, WT and DT of iPSC-derived human midbrain floorplate DA neurons
with astrocytes and genetically engineered human ESC-derived neurons were plated
following a protocol approved by the Basel Stadt veterinary office according to Swiss
federal laws.

Sterilization: As a first step, one day before the plating, all MEA chips and lids,
to cover and protect HD-MEA surfaces, were sterilized to prevent cell contamination.
Therefore, both the chips and lids were placed in petri dishes filled with 70% ethanol
for 30 minutes. Next, the ethanol was removed and chips were rinsed three times
with autoclaved ultrapure H2O. After aspirating all H2O from the chips and the lids,
a Poly-L-ornithine (PLO) (Sigma, catalog number: P4957) coating was carried out to
enable cell attachment on the electrode surface. All steps were carried out in a sterile
environment, i.e. under a laminar flow hood.

Coating: 50 µl of 100 µg/ml PLO solution was added to the center of every chip,
directly covering the electrodes and then incubated at 37°C for two hours. Next, the
PLO solution was aspirated from the electrode surface and rinsed twice with 1 ml
of sterile Dulbecco’s Phosphate-Buffered Saline (D-PBS), without letting the surface
drying out. After a final wash, every electrode surface was rinsed with 1 ml of ultrapure
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H2O and aspirated afterwards. HD-MEA chips and the lids were then air-dried in a
laminar flow hood overnight.

Medium Preparation: The cell culturing medium was based on BrainPhysTM Neu-
ronal Medium (BP) and prepared as following: 47.5 ml of BP (Stem Cell Technologies,
catalog number: 05790) was mixed with 1ml iCell Neural Supplement B (Cellular Dy-
namics International, M1029), 500 µl iCell Nervous Supplement (Cellular Dynamics
International, M1031), 500 µl N-2 Supplement (ThermoFisher Scientific, catalog num-
ber: 17502048), 50 µl laminin (Sigma, catalog number: L2020), and 500 µl penicillin-
Streptomycin (ThermoFisher Scientific, catalog number: 15140122).
80 µl of 1 mg/mL stock laminin solution was mixed with prepared BP containing 1
µg/ml laminin to obtain medium containing 80 µg/ml laminin.

Cell Plating: For the plating, we pipetted 8 µl of BP containing 80 µg/ml laminin
directly on the rectangular recording electrode area of every chip and left the chips
in the incubator for 30 minutes at 37°C. Meanwhile, BP containing 1 µg/ml laminin
was equilibrated at room temperature and the neurons and astrocytes (1 ml cryovials)
were immersed in a 37°C water bath for exactly three minutes. Next, neurons and as-
trocytes were transferred into sterile 50 ml centrifuge tubes and rinsed with 1 ml BP
containing 1 µg/ml (at room temperature) to recover any residual cells from the vial.
Another 3 ml of BP containing 1 µg/ml were added to the centrifuge tubes, yielding a
total volume of 5 ml cells + medium. The tubes with cells were then centrifuged for 5
minutes at 380 x g (1.6 · 103 RPM). After centrifuging, the supernatant was removed
and BP containing 80 µg/ml laminin added to achieve a neuron to astrocytes concen-
tration of 104 cells/µl and 2 · 103 cells/µl respectively. Finally, the cell solution was
transferred to a new 1.5 ml centrifuge tube and 10 µl of this solution were added to
the 8 µl droplet of BP containing 80 µg/ml laminin on each HD-MEA chip. All plated
chips, containing 105 cells were then incubated at 37°C, 5 % CO2 and 95 % humidity
for 1 hour, covering each chip with a lid. After incubation the chips containing the
cell droplets were filled up with 0.6 ml or 1.2 ml of BP depending on the ring size of
the chips. 50 % of BP containing 1 µg/ml medium was exchanged on the day after the
plating; thereafter we exchanged 33 % medium twice a week.
The cell plating for the third experimental series was based on the same protocol.
However, a density of 50 · 104 cells were plated on every chip. The HD-MEAs for
the second experiment, containing 6 · 103 or 3 · 104 cells per chip, were plated in
the lab of Professor Verdon Taylor [67]. Their cell culturing medium was based on
NeurobasalTM Medium (NB) and contained 24 ml NB (ThermoFisher Scientific, cata-
log number: 21103049), 250 µl penicillin-Streptomycin (ThermoFisher Scientific, cat-
alog number: 15070063), 250 µl GlutaMaxTM Supplement (ThermoFisher Scientific,
35050061) and 500 µl B-27TM Supplement (ThermoFisher Scientific, catalog number:
17504044). Additionally, growth factors were added the medium to improve differen-
tiation of not yet fully differentiated progenitors. These were 25 µl brain-derived neu-
rotrophic factor (BDNF), 19.8 µl AA, 5 µl glial cell-derived neurotrophic factor (GDNF),
2.5 µl cyclic adenosine monophosphate (cAMP), 2.5 µl DAPT and 2.5 µl transforming
growth factor beta-3 (TGFβ3). Regular 50 % of the medium was changed every second
day.
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Cell Culture # Neurons # Astrocytes # Chips

iCell® DopaNeurons +
iCell® Astrocytes

8 · 104 2 · 104 10

MyCell® DopaNeurons +
iCell® Astrocytes

8 · 104 2 · 104 10

ESC-derived neurons (WT) 6 · 103 - 6
ESC-derived neurons (WT) 3 · 104 - 6
ESC-derived neurons (DT) 6 · 103 - 6
ESC-derived neurons (DT) 3 · 104 - 6

ESC-derived neurons (WT) 5 · 104 - 10
ESC-derived neurons (DT) 5 · 104 - 10

Table 2.1: Densities of cell cultures plated per chip. First experimental
series (top) shows densities and chip numbers of iCell® DopaNeurons
with iCell® Astrocytes for WT cultures and MyCell® DopaNeurons +
iCell® Astrocytes for DT (A53T). Second (middle) and third (bottom)
experimental series show densities and chip numbers of genetically en-
gineered human ESC-derived neurons for WT and DT (GBA1-/-).

2.2 High-Density Microelectrode Array

All recordings were performed on a complementary-metal-oxide-semiconductor (CMOS)-
based high-density MEA device (see Fig. 2.2, [68, 59]). It was developed in the Bio
Engineering Laboratory (BEL, D-BSSE ETH Zürich) and commercialized by MaxWell
Biosystems AG, a spin-off company of the BEL [59, 68]. The HD-MEA of this study fea-
tures an active sensing area of 3.85 x 2.10 mm2 with 26’400 platinum microelectrodes.
The electrodes are arranged in a grid-like configuration with a center-to-center pitch
of 17.5 µm, yielding an electrode density of 3’265 microelectrodes per mm2. A subset of
1’024 electrodes connected to the corresponding readout channels can simultaneously
be measured at a sampling rate of 20 kHz and a readout noise in the AP signal band
(300 Hz - 10 kHz) of 2.4 µVrms [69].

Figure 2.2: CMOS HD-MEA system architecture. (a) Micrograph of
the CMOS device. The 1’024 readout channels are at the top and bot-
tom of the 3.85 x 2.1 mm2 electrode array. (b) Zoom of the electrode
sensing area. (c) MaxWell Biosystems’ MaxOne Single-Well HD-MEA
[68]. Figure adapted from Ballini et al. [69].
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2.2.1 HD-MEA Recordings

The software MaxLab Live (MaxWell Biosystems [68]), was used to control and visu-
alize the HD-MEA recordings. Therefore, all plated chips were sequentially connected
to a MaxOne board, which in turn was connected to a Field Programmable Gate Array
(FPGA), controlled by MaxLab installed on a computer. To map out spontaneous neu-
ronal activity on the entire HD-MEA, seven dense block configurations, each recording
1’024 electrodes, were successively scanned through the electrode array. For every con-
figuration, visible as colored areas in Fig. 2.3a, the activity was recorded for 120 sec-
onds. After data was recorded, an algorithm identified amplitudes and spike times, on
the measured electrodes which resulted in an activity map as displayed in Fig. 2.3b.
The 1’024 electrodes with the most detected spikes were each routed to one readout
channel, depicted as red squares in Fig. 2.3c. Therefore, electrode areas with no de-
tectable or few spiking activities were excluded from further analysis. Following this
electrode selection, we recorded the spontaneous electrical activity from this network
for 10 minutes. Network activity of a more mature culture, recorded on all 1’024 chan-
nels, is plotted in Fig. 2.3d. Measurements started on the sixth or seventh day after
cell plating and were repeated once a week.

Figure 2.3: Modes and outputs of recordings. (a) Activity Scan of seven
dense block configurations (colors) of 1’024 electrodes to cover all 26’400
electrodes. (b) Activity map of the activity scan screening the numbers
of spikes recorded on each electrode as a color gradient from blue (less
spike detection) to yellow (more spike detection). (c) 1’024 most suitable
electrodes connected to readout channels to record a network scan. (d)
Raster plot of spike activity read out by all channels.

2.2.2 Spike Sorting

Since the activity of a single neuron is usually detected on several fairly distant elec-
trodes on a HD-MEA (see Fig. 2.4), it is difficult to keep apart signals of neurons lying
close to each other. Hence, the obtained raw data must be pre-processed before eval-
uation and spiking activity assigned to individual neurons. This data processing is
referred to as spike sorting.
Spike sorting the network recordings yields the spatial distribution of single cells, i.e.
their “electrical footprints”. As an example, the spike-triggered average electrical foot-
print of three spike sorted units are depicted in Fig. 2.4a. Besides, Fig. 2.4b shows
sixty milliseconds of raw data recorded on the five electrodes marked with arrows and
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numbers in Fig. 2.4a. One can see, that at least two individual spikes can be identi-
fied on all five electrodes in this time period. However, the distinction of the recorded
signals for neighboring neurons, such as the green, red and blue shapes, might be diffi-
cult on a single electrode based on temporal information only. Nevertheless, by further
analyzing cumulative differences from various electrodes the activity of different cells
can be differentiated.
The software package spyking-circus was used for spike sorting single cell activity
[70]. Briefly, spyking-circus detects negative amplitude peaks of band-pass filtered
data from different channels. For every spike recorded on an electrode, the signals
were cut out, hereby referred to as templates. Depending on the position of the tem-
plates, all spikes having their maximum peak on the same electrode were divided into
groups. For each group, the templates were then masked, assuming that a single cell
can only influence electrodes nearby and only keeping those close to the peak elec-
trode. As it is classically performed by many spike sorting algorithms, the templates
were then projected into a lower dimensional feature space using principal component
analysis (PCA) [71, 72]. Finally, all templates measured by different electrodes, yet be-
longing to the signal of the same neuron, referred to as a unit, are clustered together.

Figure 2.4: Electrical activity superimposed to staining of neurons
plated on a HD-MEA. (a) The electrical activity of three neurons is
superimposed to a fluorescence image of a MAP2 staining of the cell
culture in the respective area. Spike-triggered averages of signals from
3 different neurons are drawn in green, red and blue. Averaged traces
are only displayed for electrodes with a peak-to-peak signal amplitude
exceeding a threshold of 50 µV. The activity of a single cell can be
recorded on several distant electrodes. (b) Sixty milliseconds of raw
data recorded on the five electrodes marked with arrows and numbers
in (a). At least two individual spikes can be identified in this period.
Image taken from Müller et al. [59].

2.3 Data Analysis

In the present study, we analyzed the development of neuronal cultures over time (see
Sec. 3.1.1 and Sec. 3.2.2) and the effect of different media compositions on sponta-
neous electrical activity (see Sec. 3.2.1). For the single cell- and network features we
evaluated the spike sorted data, which provided multi-channel templates, storing spa-
tial and temporal information. The code to analyze and plot the Results presented
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in this chapter (see Ch. 3) was written in the multi-paradigm numerical computing
environment MATLAB® R2019a and is attached to the appendix.

2.3.1 Single Cell Analysis

To characterize single cell spike waveform, we extracted firing rate, spike amplitude,
amplitude half-width and axonal propagation velocity. We briefly explain each mea-
sure below:

Firing Rate: In order to calculate the firing rate of a unit, we divided the number of
detected spikes by the duration of a recording.

Spike Amplitude: Next, we included the channel information of the corresponding
templates to identify voltage values of every spike. We then extracted the averaged
absolute peak values for the most dominant negative amplitude of each unit.

Spike Half-Width: Furthermore, by linear interpolation we computed the distance
of the points left and right to the peak, at half maximum amplitude height, referred to
as fill width at half maximum.

Axonal Propagation Velocity: The propagation velocity of APs was calculated as
the slope of the fit in a linear regression model of detected peaks, at distances normal-
ized to the peak of the first recorded spike.

2.3.2 Network Analysis

To study the network dynamics of neuronal cultures, we binned the spike sorted ac-
tivity over all detected neurons (1 ms bins) and studied their co-activity over time. A
burst was defined as four times the standard deviation of co-active cells per time point.

Co-Activity: To obtain the percentage of co-active cells in a burst as a function of
time, we divided the number of co-active cells by the total number of recorded units.

Interburst Interval: Interburst intervals provide a measure of the temporal regu-
larity of activity among a culture. They were estimated as the average time period
between two bursts.

Burst Half-Width: Moreover, we determined the full width at half maximum for
every burst, to infer the average duration of the observed bursts.

2.3.3 Principal Component Analysis and Correlations

Clarification of differences in cellular- and network features across different time points,
was obtained with PCA. Therefore, we converted correlations of every feature, eval-
uated among all cultures of a cell line, at every measured time point, into a two-
dimensional graph. Clusters in this graph indicate highly correlated cell cultures.
Besides, we created a graphical representation of correlations where the individual
values contained in a matrix are represented as colors in order to display the strength
of the linear relationship between single cell- and network features.
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2.3.4 Repeated Measures Analysis of Variance

To probe differences across WT and A53T cultures and their development, we per-
formed a repeated measures analysis of variance for every calculated single cell and
network features. Therefore, we constructed a matrix for every investigated feature,
containing the data for 16 cultures (nWT = 9, nA53T = 7) which survived from DIV 7 to
DIV 28 and ran the analysis for the four time points. Each row of the matrix corre-
sponds to a culture, each column corresponds to a time point. The degrees of freedom
were (4-1) = 3 for time, (4-1)·(2-1) = 3 for culture-time interaction and (16)·(4-1) = 42
for the error. Estimated p-values indicate the significance of the effect of time on the
investigated features.
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3
Results

The results derived from the analysis of single cell spike waveforms and network ac-
tivities of iPSC- and ESC-derived neuronal DA cultures are presented below. Initially
this focuses on the electrophysiological characterization of iPSC-derived neuronal cul-
tures (WT and A53T). These cells were tracked for four weeks with the goal of the first
experimental series to identify the characteristics that could distinguish between WT
and the disease type cultures (A53T)
Sec. 3.2 presents the results of our study of the effect of different culturing media com-
positions on spontaneous cellular activity (ESC-derived neurons) and the comparison
of the electrical activity of a GBA1 gene knockout line (GBA1-/-) and a corresponding
WT culture. The aim was to verify the media impact on spontaneous cell activity and
to demonstrate the consequences of GBA1-/- on network creation.

3.1 iPSC-Derived Neurons

3.1.1 Development of iPSC-Derived Neurons and Astrocytes

We investigated 10 WT- and 10 DT iPSC-derived cell cultures with the A53T mutation
for 41 days, repeating the same electrophysiological recordings once a week. Fig. 3.1
illustrates the activity maps of one representative WT culture (upper panel) and the
network activity (in Hz) recorded across 10 minutes during the corresponding network
recording with the 1’024 most active electrodes.

Figure 3.1: Six activity maps of a WT culture with corresponding spike
numbers acquired during a network scan. Recordings were taken on
DIV 7, 14, 21, 28, 35, and 41.
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3.1.2 Single Cell Features

After spike sorting the raw data of all HD-MEA recordings, we analyzed changes of
single cell features over time. Fig. 3.2 compares four features across four different
instances (DIV 7, DIV 14, DIV 21 and DIV 28). Fig. 3.2a shows the average firing rate
of every neuron from all WT and A53T cultures over time. The plot reveals an increase
of single cell activity for both WT (0.37 ± 0.08 Hz - 1.36 ± 0.22 Hz), where it reached a
plateau (∼ DIV21), as well as for A53T (0.41 ± 0.09 Hz - 1.30 ± 0.25 Hz) cultures. Fig.
3.2b likewise shows that the inferred amplitudes of extracellular AP wave forms for
WT (37.44 ± 1.14 µV - 43.70 ± 1.77 µV) and A53T (38.64 ± 1.84 µV - 45.63 ± 1.45 µV)
increased over time. Note, that we took the absolute value for these measurements as
the extracellular APs have negative amplitudes. Fig. 3.2c shows the alteration of the
full width at 50 % of the maximum extracellular AP amplitudes, which corresponds to
the duration of a spike. There was again an increase over time, although the effect for
WT cultures (0.257 ± 0.002 ms - 0.271 ± 0.004 ms) was stronger compared to A53T
(0.256 ± 0.004 ms - 0.265 ± 0.006 ms). Panel d in Fig. 3.2 shows the development of
AP propagation velocity. For the WT cultures the propagation velocity doubled in the
first two weeks (0.49 ± 0.11 m/s - 1.77 ± 0.19 m/s), whilst tripling for A53T cultures
across the same time period (0.56 ± 0.2 m/s - 1.75 ± 0.29 m/s). However, in both cases
the propagation velocity saturated and remained constant after two weeks.

Figure 3.2: Comparison of single cell features between WT cultures
(nDIV 7 = 10; nDIV 14 = 10; nDIV 21 = 9; nDIV 28 = 9) in green and A53T cul-
tures (nDIV 7 = 10; nDIV 14 = 10; nDIV 21 = 9; nDIV 28 = 7) in red. Number
of investigated cell cultures: (a) Averaged firing rates of single neurons
as a function of age (DIV). (b) Absolute amplitude values as a function
of age (DIV). (c) Spike half-width as a function of age (DIV). (d) AP
propagation velocity as a function of age (DIV).

Fig. 3.3b shows the development of the most dominant negative waveform as the cell
culture matured from DIV 7 to DIV 28. PCA of all WT cultures in Fig. 3.3c enabled
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us to identify and subsequently cluster the cultures according to their age. There was
also a correlation matrix of the analyzed waveform features of mature WT cultures on
DIV 28 (3.3d), indicating that firing rate demonstrated a strong negative correlation
to velocity and strongly with spike width. Furthermore, velocity and spike width were
strongly correlated. A weak correlation was found with amplitude.

Figure 3.3: Distinctness of single cell features. (a) Neuronal footprint
for a sorted unit after spike sorting. (b) Development of maximal Wave-
form over time (blue: DIV 7, red: DIV 28). (c) PCA of firing rate, ampli-
tude, amplitude width and velocity from WT cultures clustered accord-
ing to their age. (d) Correlation Matrix of single cell features indicating
the strength of their linear relationship.

3.1.3 Network Features

In addition to single cell characterization, we also analyzed the development of neu-
ronal network activities within the different cultures. Fig. 3.4 shows network features
extracted from spontaneous burst behaviors, recorded across a four week period. As
shown in Fig. 3.4a and b, we determined the number of simultaneously firing cells,
recorded each millisecond at DIV 14 and 28 for WT and A53T cultures. The spon-
taneous co-activity revealed a neuronal burst pattern, increasing strongly during the
first 2-3 weeks of development. Averaged durations of interburst intervals among WT
and A53T cultures are plotted in Fig. 3.4c. Excluding the first week of activity, inter-
burst intervals lasted approximately the same time at different ages (31.94 ± 4.35 s -
34.97 ± 5.72 s for WT and 30.03 ± 9.81 s - 32.47 ± 4.17 s for A53T). Again excluding
the first data points on DIV 7, Fig. 3.4d indicates that bursts lasted longer for WT
than A53T - after two weeks a burst persisted for 2.15 ± 0.48 s, while one week later
the shortest burst time period was 1.5 ± 0.09 s. For A53T cultures bursts lasted 1.42
± 0.41 s and 1.23 ± 0.21s respectively. The last plot in Fig. 3.4e represents the same
feature as depicted in Fig. 3.4a and b, however for all recorded data sets across four
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weeks. Unlike Fig. 3.4a and b, we normalized the data in Fig. 3.4e to the total number
of units in a culture which revealed the percentage of co-active cells in a burst. For
both cells co-activity increased with age, however the increase was larger for WT (∼0
% - 0.051 ± 0.008 %) than for A53T (0.002 ± 0.005 % - 0.042 ± 0.005 %).

Figure 3.4: Comparison of network features between WT cultures
(nDIV 7 = 10; nDIV 14 = 10; nDIV 21 = 9; nDIV 28 = 9) in green and A53T
cultures (nDIV 7 = 10; nDIV 14 = 10; nDIV 21 = 9; nDIV 28 = 7) in red. (a)
Co-active cells at DIV 14 (top) and DIV 28 (bottom) in WT culture as a
function of time. (b) Co-active cells at DIV 14 (top) and DIV 28 (bottom)
in A53T culture as a function of time. (c) Averaged interburst interval
as a function of age (DIV). (d) Averaged burst width as a function of
age (DIV). (e) Normalized percentage of co-active cells in a burst as a
function of age (DIV).

Similarly to the single cell feature measurements, we performed a PCA on the eval-
uated network features and plotted the 1st and 2nd PCs – these are shown in Fig.
3.5a. With the exception of DIV 21 and 28, this allowed us to idenfity and cluster
cultures according to their age. There was also a correlation matrix of the analyzed
waveform features of mature WT cultures on DIV 28 in Fig. 3.5b indicating a strong
anti-correlation of interburst interval with the other features. Burst width and co-
activity have a positive correlation.
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Figure 3.5: Distinctness of network features. (a) PCA of interburst
interval, burst duration and co-active cells from WT cultures clustered
according to their age. (b) Correlation Matrix of network features indi-
cating the strength of their linear relationship.

3.1.4 Significance of Single Cell- and Network Features

Firing Rate: The firing rate was significantly different across the four days of mea-
surement, F(3,3) = 85.06, p < 0.001, however no significant difference in firing rate
could be estimated between WT and A53T, F(3,3) = 0.85, p > 0.05.

F p-Value

DIV 85.06 6.99 · 10-18

Culture : DIV 0.85 4.74 · 10-1

Table 3.1: Output of repeated measures analysis of variance for the fir-
ing rate. F indicates the value for the F-statistic and p its corresponding
probability. A small p-value indicates significant term effect.

AP Amplidute: Amplitude was significantly different across the four days of mea-
surement, F(3,3) = 69.16, p < 0.001, however no significant difference in amplitude
could be estimated between WT and A53T, F(3,3) = 0.99, p > 0.05.

F p-Value

DIV 69.16 2.71 · 10-16

Culture : DIV 0.99 4.09 · 10-1

Table 3.2: Output of repeated measures analysis of variance for the
AP amplitude. F indicates the value for the F-statistic and p its corre-
sponding probability. A small p-value indicates significant term effect.

Amplitude Width: Amplitude width was significantly different across the four days
of measurement, F(3,3) = 69.56, p < 0.001, and we estimated a significant change in
the amplitude width between WT and A53T, F(3,3) = 4.34, p < 0.05.
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F p-Value

DIV 69.56 2.46 · 10-16

Culture : DIV 4.34 9.38 · 10-3

Table 3.3: Output of repeated measure analysis of variance for the
amplitude width. F indicates the value for the F-statistic and p its
corresponding probability. A small p-value indicates a significant term
effect.

AP Propagation Velocity: Velocity was significantly different across the four days
of measurement, F(3,3) = 68.7, p < 0.001. Howeverno significant difference in velocity
could be estimated between WT and A53T, F(3,3) = 1.73, p > 0.05.

F p-Value

DIV 68.7 3.05 · 10-16

Culture : DIV 1.73 1.75 · 10-1

Table 3.4: Output of repeated measure analysis of variance for AP
propagation velocity. F indicates the value for the F-statistic and p its
corresponding probability. A small p-value indicates significant term
effect.

Co-Activity in Burst: Co-activity was significantly different across the four days
of measurement, F(3,3) = 156.35, p < 0.001. Moreover, a significant different was
estimated for co-activity between WT and A53T, F(3,3) = 9.34, p < 0.001.

F p-Value

DIV 156.35 8.21 · 10-23

Culture : DIV 9.34 7.51 · 10-5

Table 3.5: Output of repeated measure analysis of variance for the co-
activity in a burst. F indicates the value for the F-statistic and p its
corresponding probability. A small p-value indicates significant term
effect.

Interburst Interval: Interburst intervals were significantly different across the four
days of measurement, F(3,3) = 6.81, p < 0.001, and furthermore, a significant differ-
ence in interburst intervals between WT and A53T was estimated, F(3,3) =77.92, p <
0.001.

F p-Value

DIV 6.81 7.60 · 10-4

Culture : DIV 77.92 3.34 · 10-17

Table 3.6: Output of repeated measure analysis of variance for the
interburst interval. F indicates the value for the F-statistic and p its
corresponding probability. A small p-value indicates significant term
effect.

Burst Duration: Burst duration was significantly different across the four days of
recording, F(3,3) = 45.72, p < 0.001 and we estimated a significant difference in burst
duration between WT and A53T, F(3,3) = 34.53, p < 0.001.
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F p-Value

DIV 45.72 2.73 · 10-13

Culture : DIV 34.53 2.06 · 10-11

Table 3.7: Output of repeated measure analysis of variance for the
burst duration. F indicates the value for the F-statistic and p its corre-
sponding probability. A small p-value indicates significant term effect.

3.2 ESC-Derived Neurons

This section introduces the outcomes of the experiments performed with ESC-derived
neurons provided by Professor Verdon Taylor (Department of Biomedicine, University
of Basel). Initially, we tested the effect of culture medium composition on the electrical
activity of ESC-derived neuronal cultures. In a second pilot experiment, we compared
the electrical activity of WT- and GBA1-/- cultures across development.

3.2.1 Cell Culturing Media Effect

We analyzed 12 WT- and 12 DT ESC-derived neuronal cultures with GBA1-/- across
34 days, repeating activity- and network scan recordings once a week (as described for
the iPSC experiments). Fig. 3.6 shows the activity maps of a GBA1-/- culture and spike
numbers recorded for 10 minutes during each corresponding network scan with the
1’024 most active electrodes. In the first four weeks we cultured and measured the cells
in NB-based medium, however up to DIV 20 almost no activity was detected. This is
in strong contrast to the experiments with iPSC-derived neurons. At DIV 27, periodic
activity patterns became visible in the plotted spike number and after recording we
exchanged the medium to BP-based culturing medium. The network recording was
repeated and a strong increase in electrical activity was observed.

Figure 3.6: Six activity maps of a GBA1-/- culture with corresponding
spike numbers acquired during a network scan. Recordings were taken
on DIV 8, 13, 20, 27, and 34. NB-based medium was exchanged to BP-
based medium on DIV 27.
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3.2.2 Impact of GBA1-/- on Spontaneous Activity

In the third series of experiments, we analyzed 10 WT- and 10 DT ESC-derived neu-
ronal GBA1-/- cultures in BP-based medium across 20 days to study the impact on
spontaneous electrical activity due to missing gene. As before, we repeated activity
scans and network recordings every week. Fig. 3.7 compares the activity maps of WT-
(Fig. 3.7a) and GBA1-/- (Fig. 3.7b) cultures with corresponding spike numbers recorded
for 10 minutes during a network scan of the 1’024 most active electrodes. The spon-
taneous activity of WT neuronal networks in Fig. 3.7a increased strongly across the 3
weeks of development. However, GBA1-/- neuronal networks developed less electrical
activity. For WT cultures about 15’000 spikes were detected in regular burst periods,
while no burst pattern was seen for the barely active mutated cultures.

Figure 3.7: Three activity maps of a WT- (a) and a GBA1-/- culture
(b) with corresponding spike numbers acquired during a network scan.
Recordings were taken on DIV 6, 12 and 20.
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4
Discussion

In this study, we applied state-of-the-art HD-MEAs to record human DA neuronal cul-
tures. First, we studied the development of WT- and A53T iPSC-derived cells and
showed that cells with the α-syn mutation demonstrate an altered electrophysiological
phenotype, both at the cellular and network level. In the second experiment, we stud-
ied the effect of cell medium on neuronal cell activity by comparing NB- and BP-based
culturing media. In a final pilot study, we followed ESC-derived DA neuronal cultures
over development and verified that cultures lacking GBA1-/- show a slowed maturity
rate compared to healthy control cultures.

4.1 Defining the Neuronal Phenotype

For 41 days, we traced the culture development of isogenic iPSC-derived neuronal cell
activity on HD-MEAs and compared among WT- and A53T cultures. In both cases a
similar pattern was identified - cultures started to grow, and activity increased on the
chip surface in the first 1-4 weeks.
Cellular features including firing rate, amplitude, amplitude width and velocity were
inferred from the most pronounced spike waveform of the electrical footprint of indi-
vidual spike sorted neurons (Fig. 3.3a and b). We analyzed the features over time and
examined the differences among WT and A53T cell cultures. For firing rate, amplitude
and amplitude width, the frequency shown in Fig. 3.2, voltage and distance respec-
tively clearly increased with age for WT as well as for A53T. This effect was expected
and demonstrates that cells matured on the HD-MEA. The axonal propagation veloc-
ity for both cell lines reached a plateau after DIV 21 and remained constant thereafter.
The estimated average conduction velocities for WT (1.43 m/s - 1.99 m/s) and A53T
(1.49 m/s - 2.37 m/s) at a mature stage at DIV 28 are at least 2-3 times faster than
those reported for DA neurons in previous studies [73, 74, 75]. However, the values
match those identified for non-DA neurons projecting to striaturn, thalamus, or tec-
tum [73, 74]. This naturally leads to the question whether a specification of > 80 %
in WT- and A53T cultures is inappropriate, and hence our evaluations predominantly
containing data of non-DA neurons negatively affected our results. Nevertheless, sin-
gle cell features among a culture, illustrated for WT in Fig. 3.3c, could be ranked, and
hence distinguished by age, by applying a PCA. Furthermore, the correlation matrix
of mature WT cultures on DIV 28 in 3.3d revealed the strongest (although negative)
correlation between firing rate and amplitude width, indicating that the AP of more
frequently firing neurons have narrower amplitudes and vice versa. No correlations
were found among firing rate and amplitude nor between velocity and amplitude, in-
dicating that these features have little effect on each other. Additionally, the output
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of repeated measure analysis of variance revealed that all single cell features signifi-
cantly changed across development. Only spike half-width, however showed a signif-
icant difference between WT- and A53T cultures on a single day of measurement. As
such, using only single cell features, it is hard to distinguish between A53T and WT
cultures.
At the network level however, differences between the two lines became clearer. Dur-
ing the first week, burst patterns were detected in A53T cultures, in contrast at DIV 7
no bursts could be detected and almost no co-activity could be found in any WT culture
(see Fig 3.4e), thus few interburst intervals were detected in Fig. 3.4c. Furthermore,
Fig. 3.4a and b reveal at least three times greater co-activity for A53T in the second
week. In turn, at DIV 28, both cultures reached about the same level of co-activity al-
though the A53T burst pattern demonstrated more irregularities. Furthermore, burst
width in Fig. 3.4d differed between cultures, lasting longer for WT cultures, however
the burst duration estimated at DIV 7 for WT and A53T should be interpreted with
caution - it was difficult to set a suitable threshold for burst detection at DIV 7 without
affecting other recordings. Hence, in the first week, a large number of spike activ-
ities were detected as bursts even though no actual bursts occurred, which in turn
falsified the data at the first recording day for WT- and led to large discrepancies in
A53T cultures. This could be improved in future studies. The PCA in Fig. 3.5 indi-
cated that measurements at DIV 21 and 28 were hard to distinguish - as the cluster of
both recording days overlapped. However, network features at DIV 7 and 14 could be
distinguished, with the exception of one outlier in each recording day. Moreover, the
correlation matrix for the examined network features in Fig. 3.5b revealed a strong
correlation among all three features. The strongest linear relationship was evaluated
as a negative correlation between co-active cells and interburst intervals, predicting
that many co-active cells in a culture generate more frequent bursts. Finally, repeated
measure analysis of variance verified that all network features statistically differed
depending on age and culture. Hence, it is possible to distinguish WT- and A53T cul-
tures by analyzing features at the network level.
After 4 weeks of recording, activity started to decrease, perhaps indicating that the
cultures were dying. The cause of death or inactivity is hard to deduce from HD-MEA
recordings, as cell death may occur due to different reasons. During cell development
on the chip, we observed cultures starting to cluster, as depicted in Fig. 3.1, which is
in their nature [76]. However, such clusters easily detach from the electrode surface;
thus these regions could not be recorded. Another reason may be due to exposure to
unsterile environments while transporting cells to the measurement devices result-
ing in culture contamination -, the data at DIV 35 and 41 showed large discrepancies,
potentially due to this and were excluded from further analysis.

4.2 Inhibitory- and Excitatory Effects of Culturing Media

In contrast to the commercially available iPSC-derived neurons, ESC-derived neurons
provided by the lab of Professor Verdon Taylor (Fedele et al. in preparation), both
WT as well as GBA1-/-, cultured in NB-based media, demonstrated almost no activity
for up to three weeks (see Fig. 3.6). Only four out of 24 HD-MEA chips (1 WT and 3
GBA1-/-, all containing 30k cells/chip) showed a small amount of spiking activity at DIV
20. After DIV 27, the 20 still inactive chips were considered to be dead. The activity
of four cultures that initially showed some activity, improved - yet only to a fraction
of the activity normally observed for the iPSC-derived neurons. Interestingly however,
exchanging the NB-based to BP-based medium instantly increased the spiking activity.
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The inhibiting effect of NB, which was shown in a previous study, could be verified
immediately after exchange (Fig. 3.6) DIV 27 (BP Exchange)) [77]. The number of
recorded spikes after BP medium exchange was still only 1/3 of that detected in the
iPSC development at DIV 28 (Fig. 3.1) in the first experimental series. Yet, the effect
of BP-based medium was the same, since chip cultures in this second experimental
series only contained 1/3 of the cell densities compared to those plated with iPSC-
derived neurons.

4.3 GBA1 Affecting Network Creation

Experiments with ESC-derived GBA1/GBA1-knockout neuronal cultures with a plat-
ing density of 50k cells/chip in BP-based media, unveiled a distinguishable activity pat-
tern between WT- and GBA1-/- cultures. In contrast to iPSC-derived neurons, shown in
Fig. 3.7, WT cultures already generated bursts during the first week recording. Burst
numbers increased drastically while age, implying that network formation within a
culture already occurred at an early state. On the other hand, for GBA1-/- cultures
only weak activities were recorded and even after three weeks no burst patterns were
visible. This observed behavior coincides with an ongoing study, where it is shown that
the GBA1-/- mutation evolve neurons with small soma sizes and shorter axonal exten-
sions (Fedele et al. in preparation). These circumstances hinder network formation
and network features, such as bursts, barely develop. Lastly, from the 20 plated chips
in this experimental trial, only four WT cultures evolved strong activity with large
discrepancy which complicated further statistical evaluations.
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5
Conclusion and Outlook

In summary, we used HD-MEA recordings to investigate the electrophysiological de-
velopment of WT- and mutated human stem cell derived DA neurons. Results of this
study provide further support for HD-MEAs as a reliable tool for stem cell experiments,
allowing simultaneous recordings from various neurons at high spatial and temporal
resolution. We concluded that single cell features, and in particular network features
are valuable indicators of the phenotype in a neuronal culture. Evaluating features
among different time points revealed whether cultures were healthy controls or carri-
ers of the A53T mutation.
In addition, we verified inhibition of cell activity in human ESC-derived neurons due
to NB-based culture media and rescued the negative effect by substituting cells into
BP-based neuronal growth solution. Mapping culture activity demonstrated that the
GBA1-/- mutation hinders formation of fully functional networks.

Although we were able to present a number of interesting differences between healthy
and mutant cell lines, future work is required to elaborate these differences further. It
is essential that iPSC cultures be verified to contain more than 80 % of DA neurons
(as claimed by the vendor). If this proves untrue, it may have influenced the data col-
lected in this study and could easily be tested by immunohistochemical staining for
DA neurons. Additionally, the results would be easier to interpret if single DA neurons
could be mapped out and followed. This could be achieved via optical stimulation of DA
neurons and by viral transduction with targeted expression of humanized ChR2 in DA
neurons. HD-MEA recordings of the stimulated activity in DA neurons would allow
to parse out individual cells and allow recordings of their activity. Repeated measure
analysis of variance only ascertains the significant distinction of at least two groups -
to confirm the groups a post-hoc test needs to be calculated.
Despite this, combining human stem cell technology with HD-MEA recordings yields
a state-of-the-art phenotypic screening platform, which will improve in vitro drug re-
search, and lead to more personalized treatment strategies.
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A
Appendix

In addition to the single cell- and network features studied in Sec. 3.1.2 and 3.1.3
respectively, we here introduce the codes for the plots written in MATLAB® R2019a.



clear;
close all;
warning off

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Prepare Single Cell Data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

addpath(genpath('/home/prackg/Results/PDMEA/Codes/'));
data_path = '/home/prackg/Results/PDMEA/Archive/Analysis_Commercial/
Single_Cell_Features/';
plot_path = '/home/prackg/Results/PDMEA/Archive/Analysis_Commercial/
Figures/';

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Load Data and Get Indices
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

rate_WT_DIV07 = []; rate_WT_DIV14 = [];
rate_WT_DIV21 = []; rate_WT_DIV28 = [];

rate_PD_DIV07 = []; rate_PD_DIV14 = [];
rate_PD_DIV21 = []; rate_PD_DIV28 = [];

amp_WT_DIV07 = []; amp_WT_DIV14 = [];
amp_WT_DIV21 = []; amp_WT_DIV28 = [];

amp_PD_DIV07 = []; amp_PD_DIV14 = [];
amp_PD_DIV21 = []; amp_PD_DIV28 = [];

width_WT_DIV07 = []; width_WT_DIV14 = [];
width_WT_DIV21 = []; width_WT_DIV28 = [];

width_PD_DIV07 = []; width_PD_DIV14 = [];
width_PD_DIV21 = []; width_PD_DIV28 = [];

vel_WT_DIV07 = []; vel_WT_DIV14 = [];
vel_WT_DIV21 = []; vel_WT_DIV28 = [];

vel_PD_DIV07 = []; vel_PD_DIV14 = [];
vel_PD_DIV21 = []; vel_PD_DIV28 = [];

wave_WT_DIV07 = []; wave_WT_DIV14 = [];
wave_WT_DIV21 = []; wave_WT_DIV28 = [];

wave_PD_DIV07 = []; wave_PD_DIV14 = [];
wave_PD_DIV21 = []; wave_PD_DIV28 = [];

results_WT_DIV07 = dir(fullfile(data_path,'*WTSDS190314*'));
D7_index_WT = 1:length(results_WT_DIV07);
results_WT_DIV14 = dir(fullfile(data_path,'*WTSDS190321*'));
D14_index_WT = 1:length(results_WT_DIV14);
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results_WT_DIV21 = dir(fullfile(data_path,'*WTSDS190328*'));
D21_index_WT = 1:length(results_WT_DIV21);
results_WT_DIV28 = dir(fullfile(data_path,'*WTSDS190404*'));
D28_index_WT = 1:length(results_WT_DIV28);

for a = 1:length(results_WT_DIV07)
    name = results_WT_DIV07(a).name;
    temp_path = [data_path name '/'];
    templates = dir(fullfile(temp_path,'*temp*'));
    cd(temp_path)

    mean_rate = []; mean_amp = []; mean_width = [];
    mean_vel = []; mean_wave = [];

    for b = 1:length(templates)
        load(templates(b).name);
        mean_rate = vertcat(mean_rate,table.rate);
        mean_amp = vertcat(mean_amp,table.amplitude);
        mean_width = vertcat(mean_width,table.halfwidth);

        if ~isempty(table.velocity)
            mean_vel =...
            vertcat(mean_vel,table.velocity.Coefficients.Estimate);
        end

        mean_wave = horzcat(mean_wave,table.maxwave);

    end

    rate_WT_DIV07 = vertcat(rate_WT_DIV07,mean(mean_rate));
    amp_WT_DIV07 = vertcat(amp_WT_DIV07,mean(mean_amp));
    width_WT_DIV07 = vertcat(width_WT_DIV07,mean(mean_width));
    vel_WT_DIV07 = vertcat(vel_WT_DIV07,mean(mean_vel));

    wave_WT_DIV07 = horzcat(wave_WT_DIV07,mean(mean_wave,2));
    wave_WT_DIV07 = mean(wave_WT_DIV07,2);

    clear mean_rate
    clear mean_amp
    clear mean_width
    clear mean_vel
    clear mean_wave

end

for a = 1:length(results_WT_DIV14)
    name = results_WT_DIV14(a).name;
    temp_path = [data_path name '/'];
    templates = dir(fullfile(temp_path,'*temp*'));
    cd(temp_path)

    mean_rate = []; mean_amp = []; mean_width = [];
    mean_vel = []; mean_wave = [];
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    for b = 1:length(templates)
        load(templates(b).name);
        mean_rate = vertcat(mean_rate,table.rate);
        mean_amp = vertcat(mean_amp,table.amplitude);
        mean_width = vertcat(mean_width,table.halfwidth);

        if ~isempty(table.velocity)
            mean_vel =...
            vertcat(mean_vel,table.velocity.Coefficients.Estimate);
        end

        mean_wave = horzcat(mean_wave,table.maxwave);

    end

    rate_WT_DIV14 = vertcat(rate_WT_DIV14,mean(mean_rate));
    amp_WT_DIV14 = vertcat(amp_WT_DIV14,mean(mean_amp));
    width_WT_DIV14 = vertcat(width_WT_DIV14,mean(mean_width));
    vel_WT_DIV14 = vertcat(vel_WT_DIV14,mean(mean_vel));

    wave_WT_DIV14 = horzcat(wave_WT_DIV14,mean(mean_wave,2));
    wave_WT_DIV14 = mean(wave_WT_DIV14,2);

    clear mean_rate
    clear mean_amp
    clear mean_width
    clear mean_vel
    clear mean_wave

end

for a = 1:length(results_WT_DIV21)
    name = results_WT_DIV21(a).name;
    temp_path = [data_path name '/'];
    templates = dir(fullfile(temp_path,'*temp*'));
    cd(temp_path)

    mean_rate = []; mean_amp = []; mean_width = [];
    mean_vel = []; mean_wave = [];

    for b = 1:length(templates)
        load(templates(b).name);
        mean_rate = vertcat(mean_rate,table.rate);
        mean_amp = vertcat(mean_amp,table.amplitude);
        mean_width = vertcat(mean_width,table.halfwidth);

        if ~isempty(table.velocity)
            mean_vel =...
            vertcat(mean_vel,table.velocity.Coefficients.Estimate);
        end

        mean_wave = horzcat(mean_wave,table.maxwave);

    end
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    rate_WT_DIV21 = vertcat(rate_WT_DIV21,mean(mean_rate));
    amp_WT_DIV21 = vertcat(amp_WT_DIV21,mean(mean_amp));
    width_WT_DIV21 = vertcat(width_WT_DIV21,mean(mean_width));
    vel_WT_DIV21 = vertcat(vel_WT_DIV21,mean(mean_vel));

    wave_WT_DIV21 = horzcat(wave_WT_DIV21,mean(mean_wave,2));
    wave_WT_DIV21 = mean(wave_WT_DIV21,2);

    clear mean_rate
    clear mean_amp
    clear mean_width
    clear mean_vel
    clear mean_wave

end

for a = 1:length(results_WT_DIV28)
    name = results_WT_DIV28(a).name;
    temp_path = [data_path name '/'];
    templates = dir(fullfile(temp_path,'*temp*'));
    cd(temp_path)

    mean_rate = []; mean_amp = []; mean_width = [];
    mean_vel = []; mean_wave = [];

    for b = 1:length(templates)
        load(templates(b).name);
        mean_rate = vertcat(mean_rate,table.rate);
        mean_amp = vertcat(mean_amp,table.amplitude);
        mean_width = vertcat(mean_width,table.halfwidth);

        if ~isempty(table.velocity)
            mean_vel =...
            vertcat(mean_vel,table.velocity.Coefficients.Estimate);
        end

        mean_wave = horzcat(mean_wave,table.maxwave);

    end

    rate_WT_DIV28 = vertcat(rate_WT_DIV28,mean(mean_rate));
    amp_WT_DIV28 = vertcat(amp_WT_DIV28,mean(mean_amp));
    width_WT_DIV28 = vertcat(width_WT_DIV28,mean(mean_width));
    vel_WT_DIV28 = vertcat(vel_WT_DIV28,mean(mean_vel));

    wave_WT_DIV28 = horzcat(wave_WT_DIV28,mean(mean_wave,2));
    wave_WT_DIV28 = mean(wave_WT_DIV28,2);

    clear mean_rate
    clear mean_amp
    clear mean_width
    clear mean_vel
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    clear mean_wave

end

results_PD_DIV07 = dir(fullfile(data_path,'*PDSDS190314*'));
D7_index_PD = 1:length(results_PD_DIV07);
results_PD_DIV14 = dir(fullfile(data_path,'*PDSDS190321*'));
D14_index_PD = 1:length(results_PD_DIV14);
results_PD_DIV21 = dir(fullfile(data_path,'*PDSDS190328*'));
D21_index_PD = 1:length(results_PD_DIV21);
results_PD_DIV28 = dir(fullfile(data_path,'*PDSDS190404*'));
D28_index_PD = 1:length(results_PD_DIV28);

for a = 1:length(results_PD_DIV07)
    name = results_PD_DIV07(a).name;
    temp_path = [data_path name '/'];
    templates = dir(fullfile(temp_path,'*temp*'));
    cd(temp_path)

    mean_rate = []; mean_amp = []; mean_width = [];
    mean_vel = []; mean_wave = [];

    for b = 1:length(templates)
        load(templates(b).name);
        mean_rate = vertcat(mean_rate,table.rate);
        mean_amp = vertcat(mean_amp,table.amplitude);
        mean_width = vertcat(mean_width,table.halfwidth);

        if ~isempty(table.velocity)
            mean_vel =...
            vertcat(mean_vel,table.velocity.Coefficients.Estimate);
        end

        mean_wave = horzcat(mean_wave,table.maxwave);

    end

    rate_PD_DIV07 = vertcat(rate_PD_DIV07,mean(mean_rate));
    amp_PD_DIV07 = vertcat(amp_PD_DIV07,mean(mean_amp));
    width_PD_DIV07 = vertcat(width_PD_DIV07,mean(mean_width));
    vel_PD_DIV07 = vertcat(vel_PD_DIV07,mean(mean_vel));

    wave_PD_DIV07 = horzcat(wave_PD_DIV07,mean(mean_wave,2));
    wave_PD_DIV07 = mean(wave_PD_DIV07,2);

    clear mean_rate
    clear mean_amp
    clear mean_width
    clear mean_vel
    clear mean_wave

end
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vel_PD_DIV07(10) = 0.5233;

for a = 1:length(results_PD_DIV14)
    name = results_PD_DIV14(a).name;
    temp_path = [data_path name '/'];
    templates = dir(fullfile(temp_path,'*temp*'));
    cd(temp_path)

    mean_rate = []; mean_amp = []; mean_width = [];
    mean_vel = []; mean_wave = [];

    for b = 1:length(templates)
        load(templates(b).name);
        mean_rate = vertcat(mean_rate,table.rate);
        mean_amp = vertcat(mean_amp,table.amplitude);
        mean_width = vertcat(mean_width,table.halfwidth);

        if ~isempty(table.velocity)
            mean_vel =...
            vertcat(mean_vel,table.velocity.Coefficients.Estimate);
        end

        mean_wave = horzcat(mean_wave,table.maxwave);

    end

    rate_PD_DIV14 = vertcat(rate_PD_DIV14,mean(mean_rate));
    amp_PD_DIV14 = vertcat(amp_PD_DIV14,mean(mean_amp));
    width_PD_DIV14 = vertcat(width_PD_DIV14,mean(mean_width));
    vel_PD_DIV14 = vertcat(vel_PD_DIV14,mean(mean_vel));

    wave_PD_DIV14 = horzcat(wave_PD_DIV14,mean(mean_wave,2));
    wave_PD_DIV14 = mean(wave_PD_DIV14,2);

    clear mean_rate
    clear mean_amp
    clear mean_width
    clear mean_vel
    clear mean_wave

end

for a = 1:length(results_PD_DIV21)
    name = results_PD_DIV21(a).name;
    temp_path = [data_path name '/'];
    templates = dir(fullfile(temp_path,'*temp*'));
    cd(temp_path)

    mean_rate = []; mean_amp = []; mean_width = [];
    mean_vel = []; mean_wave = [];

    for b = 1:length(templates)
        load(templates(b).name);
        mean_rate = vertcat(mean_rate,table.rate);
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        mean_amp = vertcat(mean_amp,table.amplitude);
        mean_width = vertcat(mean_width,table.halfwidth);

        if ~isempty(table.velocity)
            mean_vel =...
            vertcat(mean_vel,table.velocity.Coefficients.Estimate);
        end

        mean_wave = horzcat(mean_wave,table.maxwave);

    end

    rate_PD_DIV21 = vertcat(rate_PD_DIV21,mean(mean_rate));
    amp_PD_DIV21 = vertcat(amp_PD_DIV21,mean(mean_amp));
    width_PD_DIV21 = vertcat(width_PD_DIV21,mean(mean_width));
    vel_PD_DIV21 = vertcat(vel_PD_DIV21,mean(mean_vel));

    wave_PD_DIV21 = horzcat(wave_PD_DIV21,mean(mean_wave,2));
    wave_PD_DIV21 = mean(wave_PD_DIV21,2);

    clear mean_rate
    clear mean_amp
    clear mean_width
    clear mean_vel
    clear mean_wave

end

for a = 1:length(results_PD_DIV28)
    name = results_PD_DIV28(a).name;
    temp_path = [data_path name '/'];
    templates = dir(fullfile(temp_path,'*temp*'));
    cd(temp_path)

    mean_rate = []; mean_amp = []; mean_width = [];
    mean_vel = []; mean_wave = [];

    for b = 1:length(templates)
        load(templates(b).name);
        mean_rate = vertcat(mean_rate,table.rate);
        mean_amp = vertcat(mean_amp,table.amplitude);
        mean_width = vertcat(mean_width,table.halfwidth);

        if ~isempty(table.velocity)
            mean_vel =...
            vertcat(mean_vel,table.velocity.Coefficients.Estimate);
        end

        mean_wave = horzcat(mean_wave,table.maxwave);

    end

    rate_PD_DIV28 = vertcat(rate_PD_DIV28,mean(mean_rate));
    amp_PD_DIV28 = vertcat(amp_PD_DIV28,mean(mean_amp));
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    width_PD_DIV28 = vertcat(width_PD_DIV28,mean(mean_width));
    vel_PD_DIV28 = vertcat(vel_PD_DIV28,mean(mean_vel));

    wave_PD_DIV28 = horzcat(wave_PD_DIV28,mean(mean_wave,2));
    wave_PD_DIV28 = mean(wave_PD_DIV28,2);

    clear mean_rate
    clear mean_amp
    clear mean_width
    clear mean_vel
    clear mean_wave

end

cd(plot_path);

Rates = [rate_WT_DIV07;rate_PD_DIV07;rate_WT_DIV14;rate_PD_DIV14;...
    rate_WT_DIV21;rate_PD_DIV21;rate_WT_DIV28;rate_PD_DIV28];

g_rate = [ones(size(rate_WT_DIV07));2*ones(size(rate_PD_DIV07));...
    3*ones(size(rate_WT_DIV14));4*ones(size(rate_PD_DIV14));...
    5*ones(size(rate_WT_DIV21));6*ones(size(rate_PD_DIV21));...
    7*ones(size(rate_WT_DIV28));8*ones(size(rate_PD_DIV28))];

% Save .mat Files
save(['Rates' '.mat'],'Rates');
save(['g_rate' '.mat'],'g_rate');

Amplitudes = [amp_WT_DIV07;amp_PD_DIV07;...
    amp_WT_DIV14;amp_PD_DIV14;...
    amp_WT_DIV21;amp_PD_DIV21;...
    amp_WT_DIV28;amp_PD_DIV28];

g_amp = [ones(size(amp_WT_DIV07));2*ones(size(amp_PD_DIV07));...
    3*ones(size(amp_WT_DIV14));4*ones(size(amp_PD_DIV14));...
    5*ones(size(amp_WT_DIV21));6*ones(size(amp_PD_DIV21));...
    7*ones(size(amp_WT_DIV28));8*ones(size(amp_PD_DIV28))];

% Save .mat Files
save(['Amplitudes' '.mat'],'Amplitudes');
save(['g_amp' '.mat'],'g_amp');

Widths = [width_WT_DIV07;width_PD_DIV07;...
    width_WT_DIV14;width_PD_DIV14;...
    width_WT_DIV21;width_PD_DIV21;...
    width_WT_DIV28;width_PD_DIV28];

g_width = [ones(size(width_WT_DIV07));2*ones(size(width_PD_DIV07));...
    3*ones(size(width_WT_DIV14));4*ones(size(width_PD_DIV14));...
    5*ones(size(width_WT_DIV21));6*ones(size(width_PD_DIV21));...
    7*ones(size(width_WT_DIV28));8*ones(size(width_PD_DIV28))];

% Save .mat Files
save(['Widths' '.mat'],'Widths');
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save(['g_width' '.mat'],'g_width');

Velocities = [vel_WT_DIV07;vel_PD_DIV07;vel_WT_DIV14;vel_PD_DIV14;...
    vel_WT_DIV21;vel_PD_DIV21;vel_WT_DIV28;vel_PD_DIV28];

g_vel = [ones(size(vel_WT_DIV07));2*ones(size(vel_PD_DIV07));...
    3*ones(size(vel_WT_DIV14));4*ones(size(vel_PD_DIV14));...
    5*ones(size(vel_WT_DIV21));6*ones(size(vel_PD_DIV21));...
    7*ones(size(vel_WT_DIV28));8*ones(size(vel_PD_DIV28))];

% Save .mat Files
save(['Velocities' '.mat'],'Velocities');
save(['g_vel' '.mat'],'g_vel');

Waves = [wave_WT_DIV07,wave_WT_DIV28];

% Save .mat Files
save(['Waves' '.mat'],'Waves');

WT_mat_D07 = [rate_WT_DIV07, amp_WT_DIV07,...
    width_WT_DIV07, vel_WT_DIV07];
WT_mat_D14 = [rate_WT_DIV14, amp_WT_DIV14,...
    width_WT_DIV14, vel_WT_DIV14];
WT_mat_D21 = [rate_WT_DIV21, amp_WT_DIV21,...
    width_WT_DIV21, vel_WT_DIV21];
WT_mat_D28 = [rate_WT_DIV28, amp_WT_DIV28,...
    width_WT_DIV28, vel_WT_DIV28];

WT_mat = [WT_mat_D07(1:9,:),WT_mat_D14(1:9,:),WT_mat_D21,WT_mat_D28];

% Save .mat Files
save(['WT_mat' '.mat'],'WT_mat');

WT_mat_D07_index = [ones(length(D7_index_WT),1)*1, ...
    reshape(WT_mat_D07, length(D7_index_WT), [])];
WT_mat_D14_index = [ones(length(D14_index_WT),1)*2,...
    reshape(WT_mat_D14, length(D14_index_WT), [])];
WT_mat_D21_index = [ones(length(D21_index_WT),1)*3,...
    reshape(WT_mat_D21, length(D21_index_WT), [])];
WT_mat_D28_index = [ones(length(D28_index_WT),1)*4,...
    reshape(WT_mat_D28, length(D28_index_WT), [])];

WT_mat_combi = [WT_mat_D07_index; WT_mat_D14_index;...
    WT_mat_D21_index; WT_mat_D28_index];

% Save .mat Files
save(['WT_mat_combi' '.mat'],'WT_mat_combi');

PD_mat_D07 = [rate_PD_DIV07, amp_PD_DIV07,...
    width_PD_DIV07, vel_PD_DIV07];
PD_mat_D14 = [rate_PD_DIV14, amp_PD_DIV14,...
    width_PD_DIV14, vel_PD_DIV14];
PD_mat_D21 = [rate_PD_DIV21, amp_PD_DIV21,...
    width_PD_DIV21, vel_PD_DIV21];
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PD_mat_D28 = [rate_PD_DIV28, amp_PD_DIV28,...
    width_PD_DIV28, vel_PD_DIV28];

PD_mat = [PD_mat_D07(1:7,:),PD_mat_D14(1:7,:),...
    PD_mat_D21(1:7,:),PD_mat_D28];

% Save .mat Files
save(['PD_mat' '.mat'],'PD_mat');

PD_mat_D07_index = [ones(length(D7_index_PD),1)*1,...
    reshape(PD_mat_D07, length(D7_index_PD), [])];
PD_mat_D14_index = [ones(length(D14_index_PD),1)*2,...
    reshape(PD_mat_D14, length(D14_index_PD), [])];
PD_mat_D21_index = [ones(length(D21_index_PD),1)*3,...
    reshape(PD_mat_D21, length(D21_index_PD), [])];
PD_mat_D28_index = [ones(length(D28_index_PD),1)*4,...
    reshape(PD_mat_D28, length(D28_index_PD), [])];

PD_mat_combi = [PD_mat_D07_index; PD_mat_D14_index;...
    PD_mat_D21_index; PD_mat_D28_index];

% Save .mat Files
save(['PD_mat_combi' '.mat'],'PD_mat_combi');

% Get Dis-Similarity Between Cells
sim_vec = pdist(WT_mat_D28','correlation');
sim_mat = squareform(sim_vec);

% Average Linkage With Average Criteria
tree = linkage(sim_vec,'average');

% Find the Optimal Leaf Order (Group Most Similar Cells)
optimal_leafOrder = optimalleaforder(tree,sim_vec);

% Reorder Matrix
sim_mat_reordered = sim_mat(optimal_leafOrder,optimal_leafOrder);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%  Plot Figure 1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Fig1 = figure('Position', [9 396 964 646],'color','white');

% Plot Spike Triggered Averages
cd  '/home/prackg/Results/PDMEA/Archive/Data/Merged/DIV21/
PDSDS181214-2649/'
load unit-25.mat
sub8 = subplot(2,2,1);
plot_colored_template_circus(wfs_table.single_template_spatial,...
    [wfs_table.x_inc wfs_table.y_inc],0,5);
axis square
axis tight

cd(plot_path);
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% WT Wave Plot
sub1 = subplot(2,2,2);
sub1.Position = [0.47 0.5838 0.3347 0.3412];
ax1 = gca;
plot(Waves,'linew',2);
ylabel('Amplitude (\muV)');
legend({'DIV 7','DIV 28'},'Location','southeast');
legend boxoff;
axis square;
xticks([10 20 30 40 50]);
xlabel('Time (ms)');
xticklabels({'0.5','1','1.5','2','2.5'});
ax1.Box = 'off';

% PCA
sub2 = subplot(2,2,3);
ax2 = gca;
[coeff,score] = pca(zscore(WT_mat_combi(:,2:5)));
hold on;
h = scatter(score(:,1),score(:,2),20,WT_mat_combi(:,1),'filled');
h.MarkerEdgeColor = [0.7 0.7 0.7];
h.SizeData = 40;
set(gca, 'Box', 'off');
ylabel('PC2','Fontsize',12);
xlabel('PC1','Fontsize',12);
axis square
ax2.YTick = [-4 -2 0 2 4];
xlim([-4 4]);
ylim([-4 4]);
hold on;
plot([-5 5],[0 0],'--','Color',[0.2 0.2 0.2])
hold on;
plot([0 0],[-4 4],'--','Color',[0.2 0.2 0.2])
title1 = title('WT');
title1.FontWeight = 'normal';
title1.Position = [-3.8 3.5 0];
title1.HorizontalAlignment = 'left';

% Plot Dendrogram and Correlation Matrix
axes('Position',[0.44 0.145 0.1 0.27]);
h = dendrogram(tree,0,'reorder',optimal_leafOrder,...
    'Orientation','left','ColorThreshold',10); axis tight;axis off;
set(h,'Color',[0 0 0]);
box off
axes('Position',[0.47 0.1100 0.3347 0.3412]);
hold on; imagesc(1-sim_mat_reordered);
set(gca,'Box','off','TickDir','out','TickLength',[.0 .0],...
    'XMinorTick','off','YMinorTick','off','YGrid','off');
axis off;
axis square;
axis tight;
set(gca,'yticklabel',{[]});
xlabel('Metrics','Fontsize',14);
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title2 = title('WT: DIV 28');
title2.FontWeight = 'normal';

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Figure 2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Fig2 = figure('Position', [202 172 900 700],'color','white');

% Boxplot Firing Rate
sub4 = subplot(2,2,1);
colors = [[0.4660 0.6740 0.1880];[0.6350 0.0780 0.1840]];
ax1 = gca;
boxplot(Rates,g_rate,'positions',...
    [1.25 1.75 3.25 3.75 5.25 5.75 7.25 7.75]);
med = findobj(gcf,'tag','Median');
set(med,'Color','k');
out = findobj(gcf,'tag','Outliers');
set(out,'MarkerEdgeColor','k');
box1 = findobj(gcf,'tag','Box');
box1(7).Color = colors(2,:);
box1(5).Color = colors(2,:);
box1(3).Color = colors(2,:);
box1(1).Color = colors(2,:);
box1(8).Color = colors(1,:);
box1(6).Color = colors(1,:);
box1(4).Color = colors(1,:);
box1(2).Color = colors(1,:);
uw = findobj(gcf,'tag','Upper Whisker');
set(uw,'LineStyle','--');
lw = findobj(gcf,'tag','Lower Whisker');
set(lw,'LineStyle','--');
ax1.XTickLabel = {};
ax1.XTick = [1.5 3.5 5.5 7.5];
ylabel('Firing Rate (Hz)');
axis square;
ax1.Box = 'off';
leg4 = legend([box1(8),box1(7)],{'WT','A53T'},...
    'Location','northwest','Box','off');

% Boxplot Amplitudes
sub5 = subplot(2,2,2);
sub5.Position(1) = 0.5;
colors = [[0.4660 0.6740 0.1880];[0.6350 0.0780 0.1840]];
ax5 = gca;
boxplot(Amplitudes,g_amp,'positions',...
    [1.25 1.75 3.25 3.75 5.25 5.75 7.25 7.75]);
med = findobj(gcf,'tag','Median');
set(med,'Color','k');
out = findobj(gcf,'tag','Outliers');
set(out,'MarkerEdgeColor','k');
box2 = findobj(gcf,'tag','Box');
box2(7).Color = colors(2,:);
box2(5).Color = colors(2,:);
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box2(3).Color = colors(2,:);
box2(1).Color = colors(2,:);
box2(8).Color = colors(1,:);
box2(6).Color = colors(1,:);
box2(4).Color = colors(1,:);
box2(2).Color = colors(1,:);
uw = findobj(gcf,'tag','Upper Whisker');
set(uw,'LineStyle','--');
lw = findobj(gcf,'tag','Lower Whisker');
set(lw,'LineStyle','--');
ax5.XTickLabel = {};
ax5.XTick = [1.5 3.5 5.5 7.5];
ylabel('Amplitude (\muV)');
axis square;
ax5.Box = 'off';

% Boxplot Amplitude Half Mean Widths
sub6 = subplot(2,2,3);
sub6.Position(2) = 0.2;
colors = [[0.4660 0.6740 0.1880];[0.6350 0.0780 0.1840]];
ax6 = gca;
boxplot(Widths/20,g_width,'positions',...
    [1.25 1.75 3.25 3.75 5.25 5.75 7.25 7.75]);
med = findobj(gcf,'tag','Median');
set(med,'Color','k');
out = findobj(gcf,'tag','Outliers');
set(out,'MarkerEdgeColor','k');
box3 = findobj(gcf,'tag','Box');
box3(7).Color = colors(2,:);
box3(5).Color = colors(2,:);
box3(3).Color = colors(2,:);
box3(1).Color = colors(2,:);
box3(8).Color = colors(1,:);
box3(6).Color = colors(1,:);
box3(4).Color = colors(1,:);
box3(2).Color = colors(1,:);
uw = findobj(gcf,'tag','Upper Whisker');
set(uw,'LineStyle','--');
lw = findobj(gcf,'tag','Lower Whisker');
set(lw,'LineStyle','--');
ax6.XTickLabel = {'DIV 7','DIV 14','DIV 21','DIV 28'};
ax6.XTick = [1.5 3.5 5.5 7.5];
ylabel('Amplitude Width (ms)');
axis square;
ax6.Box = 'off';

% Boxplot AP propagation Velocity
sub7 = subplot(2,2,4);
sub7.Position(2) = 0.2;
sub7.Position(1) = 0.5;
colors = [[0.4660 0.6740 0.1880];[0.6350 0.0780 0.1840]];
ax7 = gca;
boxplot(Velocities,g_vel,'positions',...
    [1.25 1.75 3.25 3.75 5.25 5.75 7.25 7.75]);
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med = findobj(gcf,'tag','Median');
set(med,'Color','k');
out = findobj(gcf,'tag','Outliers');
set(out,'MarkerEdgeColor','k');
box4 = findobj(gcf,'tag','Box');
box4(7).Color = colors(2,:);
box4(5).Color = colors(2,:);
box4(3).Color = colors(2,:);
box4(1).Color = colors(2,:);
box4(8).Color = colors(1,:);
box4(6).Color = colors(1,:);
box4(4).Color = colors(1,:);
box4(2).Color = colors(1,:);
uw = findobj(gcf,'tag','Upper Whisker');
set(uw,'LineStyle','--');
lw = findobj(gcf,'tag','Lower Whisker');
set(lw,'LineStyle','--');
ax7.XTickLabel = {'DIV 7','DIV 14','DIV 21','DIV 28'};
ax7.XTick = [1.5 3.5 5.5 7.5];
ylabel('Velocity (m/s)');
axis square;
ax7.Box = 'off';

%Save
saveas(Fig1,'SingleCell1','png');
saveas(Fig1,'SingleCell1','svg');
saveas(Fig2,'SingleCell2','png');
saveas(Fig2,'SingleCell2','svg');
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clear;
close all;
warning off

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Prepare Network Data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

addpath(genpath('/home/prackg/Results/PDMEA/Codes/'));
data_path = '/home/prackg/Results/PDMEA/Archive/Analysis_Commercial/
Network_Features/';
plot_path = '/home/prackg/Results/PDMEA/Archive/Analysis_Commercial/
Figures/';

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Load Data and get Indices
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

burstrate_WT_DIV07 = []; burstrate_WT_DIV14 = [];
burstrate_WT_DIV21 = []; burstrate_WT_DIV28 = [];

burstrate_PD_DIV07 = []; burstrate_PD_DIV14 = [];
burstrate_PD_DIV21 = []; burstrate_PD_DIV28 = [];

dur_WT_DIV07 = []; dur_WT_DIV14 = [];
dur_WT_DIV21 = []; dur_WT_DIV28 = [];

dur_PD_DIV07 = []; dur_PD_DIV14 = [];
dur_PD_DIV21 = []; dur_PD_DIV28 = [];

co_WT_DIV07 = []; co_WT_DIV14 = [];
co_WT_DIV21 = []; co_WT_DIV28 = [];

co_PD_DIV07 = []; co_PD_DIV14 = [];
co_PD_DIV21 = []; co_PD_DIV28 = [];

cd(data_path)

load('WTSDS190314-2668.mat'); coact_WT_DIV07 = table.vec_smooth;
load('WTSDS190321-2668.mat'); coact_WT_DIV14 = table.vec_smooth;
load('WTSDS190328-2668.mat'); coact_WT_DIV21 = table.vec_smooth;
load('WTSDS190404-2668.mat'); coact_WT_DIV28 = table.vec_smooth;

load('PDSDS190314-2663.mat'); coact_PD_DIV07 = table.vec_smooth;
load('PDSDS190321-2663.mat'); coact_PD_DIV14 = table.vec_smooth;
load('PDSDS190328-2663.mat'); coact_PD_DIV21 = table.vec_smooth;
load('PDSDS190404-2663.mat'); coact_PD_DIV28 = table.vec_smooth;

results_WT_DIV07 = dir(fullfile(data_path,'*WTSDS190314*'));
D7_index_WT = 1:length(results_WT_DIV07);
results_WT_DIV14 = dir(fullfile(data_path,'*WTSDS190321*'));
D14_index_WT = 1:length(results_WT_DIV14);
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results_WT_DIV21 = dir(fullfile(data_path,'*WTSDS190328*'));
D21_index_WT = 1:length(results_WT_DIV21);
results_WT_DIV28 = dir(fullfile(data_path,'*WTSDS190404*'));
D28_index_WT = 1:length(results_WT_DIV28);

for a = 1:length(results_WT_DIV07)
    name = results_WT_DIV07(a).name;
    load(name);
    burstrate_WT_DIV07 =...
        vertcat(burstrate_WT_DIV07,mean(table.burstrate'));
    dur_WT_DIV07 = vertcat(dur_WT_DIV07,mean(table.burstwidth'));
    co_WT_DIV07 = vertcat(co_WT_DIV07,mean(table.burstamp'));
end

for a = 1:length(results_WT_DIV14)
    name = results_WT_DIV14(a).name;
    load(name);
    burstrate_WT_DIV14 =...
        vertcat(burstrate_WT_DIV14,mean(table.burstrate'));
    dur_WT_DIV14 = vertcat(dur_WT_DIV14,mean(table.burstwidth'));
    co_WT_DIV14 = vertcat(co_WT_DIV14,mean(table.burstamp'));

end

for a = 1:length(results_WT_DIV21)
    name = results_WT_DIV21(a).name;
    load(name);
    burstrate_WT_DIV21 =...
        vertcat(burstrate_WT_DIV21,mean(table.burstrate'));
    dur_WT_DIV21 = vertcat(dur_WT_DIV21,mean(table.burstwidth'));
    co_WT_DIV21 = vertcat(co_WT_DIV21,mean(table.burstamp'));

end

for a = 1:length(results_WT_DIV28)
    name = results_WT_DIV28(a).name;
    load(name);
    burstrate_WT_DIV28 =...
        vertcat(burstrate_WT_DIV28,mean(table.burstrate'));
    dur_WT_DIV28 = vertcat(dur_WT_DIV28,mean(table.burstwidth'));
    co_WT_DIV28 = vertcat(co_WT_DIV28,mean(table.burstamp'));

end

results_PD_DIV07 = dir(fullfile(data_path,'*PDSDS190314*'));
D7_index_PD = 1:length(results_PD_DIV07);
results_PD_DIV14 = dir(fullfile(data_path,'*PDSDS190321*'));
D14_index_PD = 1:length(results_PD_DIV14);
results_PD_DIV21 = dir(fullfile(data_path,'*PDSDS190328*'));
D21_index_PD = 1:length(results_PD_DIV21);
results_PD_DIV28 = dir(fullfile(data_path,'*PDSDS190404*'));
D28_index_PD = 1:length(results_PD_DIV28);

for a = 1:length(results_PD_DIV07)
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    name = results_PD_DIV07(a).name;
    load(name);
    burstrate_PD_DIV07 =...
        vertcat(burstrate_PD_DIV07,mean(table.burstrate'));
    dur_PD_DIV07 = vertcat(dur_PD_DIV07,mean(table.burstwidth'));
    co_PD_DIV07 = vertcat(co_PD_DIV07,mean(table.burstamp'));

end

for a = 1:length(results_PD_DIV14)
    name = results_PD_DIV14(a).name;
    load(name);
    burstrate_PD_DIV14 =...
        vertcat(burstrate_PD_DIV14,mean(table.burstrate'));
    dur_PD_DIV14 = vertcat(dur_PD_DIV14,mean(table.burstwidth'));
    co_PD_DIV14 = vertcat(co_PD_DIV14,mean(table.burstamp'));

end

for a = 1:length(results_PD_DIV21)
    name = results_PD_DIV21(a).name;
    load(name);
    burstrate_PD_DIV21 =...
        vertcat(burstrate_PD_DIV21,mean(table.burstrate'));
    dur_PD_DIV21 = vertcat(dur_PD_DIV21,mean(table.burstwidth'));
    co_PD_DIV21 = vertcat(co_PD_DIV21,mean(table.burstamp'));

end

for a = 1:length(results_PD_DIV28)
    name = results_PD_DIV28(a).name;
    load(name);
    burstrate_PD_DIV28 =...
        vertcat(burstrate_PD_DIV28,mean(table.burstrate'));
    dur_PD_DIV28 = vertcat(dur_PD_DIV28,mean(table.burstwidth'));
    co_PD_DIV28 = vertcat(co_PD_DIV28,mean(table.burstamp'));

end

cd(plot_path);

Burstrates = [burstrate_WT_DIV07;burstrate_PD_DIV07;...
    burstrate_WT_DIV14;burstrate_PD_DIV14;...
    burstrate_WT_DIV21;burstrate_PD_DIV21;...
    burstrate_WT_DIV28;burstrate_PD_DIV28];

g_burstrate = [ones(size(burstrate_WT_DIV07));...
    2*ones(size(burstrate_PD_DIV07));...
    3*ones(size(burstrate_WT_DIV14));...
    4*ones(size(burstrate_PD_DIV14));...
    5*ones(size(burstrate_WT_DIV21));...
    6*ones(size(burstrate_PD_DIV21));...
    7*ones(size(burstrate_WT_DIV28));...
    8*ones(size(burstrate_PD_DIV28))];
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% Save .mat Files
save(['Burstrates' '.mat'],'Burstrates');
save(['g_burstrate' '.mat'],'g_burstrate');

Durations = [dur_WT_DIV07;dur_PD_DIV07;...
    dur_WT_DIV14;dur_PD_DIV14;...
    dur_WT_DIV21;dur_PD_DIV21;...
    dur_WT_DIV28;dur_PD_DIV28];

g_dur = [ones(size(dur_WT_DIV07));2*ones(size(dur_PD_DIV07));...
    3*ones(size(dur_WT_DIV14));4*ones(size(dur_PD_DIV14));...
    5*ones(size(dur_WT_DIV21));6*ones(size(dur_PD_DIV21));...
    7*ones(size(dur_WT_DIV28));8*ones(size(dur_PD_DIV28))];

% Save .mat Files
save(['Durations' '.mat'],'Durations');
save(['g_dur' '.mat'],'g_dur');

Coactivity = [co_WT_DIV07;co_PD_DIV07;co_WT_DIV14;co_PD_DIV14;...
    co_WT_DIV21;co_PD_DIV21;co_WT_DIV28;co_PD_DIV28];

g_co = [ones(size(co_WT_DIV07));2*ones(size(co_PD_DIV07));...
    3*ones(size(co_WT_DIV14));4*ones(size(co_PD_DIV14));...
    5*ones(size(co_WT_DIV21));6*ones(size(co_PD_DIV21));...
    7*ones(size(co_WT_DIV28));8*ones(size(co_PD_DIV28))];

% Save .mat Files
save(['Coactivity' '.mat'],'Coactivity');
save(['g_co' '.mat'],'g_co');

WT_mat_D07 = [burstrate_WT_DIV07, dur_WT_DIV07, co_WT_DIV07];
WT_mat_D14 = [burstrate_WT_DIV14, dur_WT_DIV14, co_WT_DIV14];
WT_mat_D21 = [burstrate_WT_DIV21, dur_WT_DIV21, co_WT_DIV21];
WT_mat_D28 = [burstrate_WT_DIV28, dur_WT_DIV28, co_WT_DIV28];

WT_mat_single = [WT_mat_D07(1:9,:),WT_mat_D14(1:9,:),...
    WT_mat_D21,WT_mat_D28];

% Save .mat Files
save(['WT_mat_single' '.mat'],'WT_mat_single');

WT_mat_D07_index = [ones(length(D7_index_WT),1)*1,...
    reshape(WT_mat_D07, length(D7_index_WT), [])];

WT_mat_D14_index = [ones(length(D14_index_WT),1)*2,...
    reshape(WT_mat_D14, length(D14_index_WT), [])];

WT_mat_D21_index = [ones(length(D21_index_WT),1)*3,...
    reshape(WT_mat_D21, length(D21_index_WT), [])];

WT_mat_D28_index = [ones(length(D28_index_WT),1)*4,...
    reshape(WT_mat_D28, length(D28_index_WT), [])];
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WT_mat_combi_single = [WT_mat_D07_index; WT_mat_D14_index;...
    WT_mat_D21_index; WT_mat_D28_index];

% Save .mat Files
save(['WT_mat_combi_single' '.mat'],'WT_mat_combi_single');

PD_mat_D07 = [burstrate_PD_DIV07, dur_PD_DIV07, co_PD_DIV07];
PD_mat_D14 = [burstrate_PD_DIV14, dur_PD_DIV14, co_PD_DIV14];
PD_mat_D21 = [burstrate_PD_DIV21, dur_PD_DIV21, co_PD_DIV21];
PD_mat_D28 = [burstrate_PD_DIV28, dur_PD_DIV28, co_PD_DIV28];

PD_mat = [PD_mat_D07(1:7,:),PD_mat_D14(1:7,:),...
    PD_mat_D21(1:7,:),PD_mat_D28];

% Save .mat Files
save(['PD_mat' '.mat'],'PD_mat');

PD_mat_D07_index = [ones(length(D7_index_PD),1)*1,...
    reshape(PD_mat_D07, length(D7_index_PD), [])];

PD_mat_D14_index = [ones(length(D14_index_PD),1)*2,...
    reshape(PD_mat_D14, length(D14_index_PD), [])];

PD_mat_D21_index = [ones(length(D21_index_PD),1)*3,...
    reshape(PD_mat_D21, length(D21_index_PD), [])];

PD_mat_D28_index = [ones(length(D28_index_PD),1)*4,...
    reshape(PD_mat_D28, length(D28_index_PD), [])];

PD_mat_combi = [PD_mat_D07_index; PD_mat_D14_index;...
    PD_mat_D21_index; PD_mat_D28_index];

% Save .mat Files
save(['PD_mat_combi' '.mat'],'PD_mat_combi');

% Get Dis-Similarity between Cells
sim_vec = pdist(WT_mat_D28','correlation');
sim_mat = squareform(sim_vec);

% Average Linkage with Average Criteria
tree = linkage(sim_vec,'average');

% Find the Optimal Leaf Order (Group Most Similar Cells)
optimal_leafOrder = optimalleaforder(tree,sim_vec);

% Reorder Matrix
sim_mat_reordered = sim_mat(optimal_leafOrder,optimal_leafOrder);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%  Plot data Figure 1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Fig1 = figure('Position', [50 300 1000 750],'color','white');
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% Plot Smoothed Burst Vector
sub1 = subplot(3,3,[1 1.5]);
sub1.Position(4) = 0.15;
plot(smooth(coact_WT_DIV14,500),'Color',[0.7 0.7 0.7],'linew',1.3);
ax1 = gca;
axis tight
ylabel('Co-active cells (ms^{#1})');
ax1.XTickLabel = {};
xlim([1 120000]);
ylim([0 60]);
ax1.Box = 'off';
ax1.XAxis.Visible = 'off';
title1 = title('WT: DIV 14');
title1.Position(2) = 60;
title1.FontWeight = 'normal';

% Plot Smoothed Burst Vector
sub2 = subplot(3,3,[4 4.5]);
sub2.Position(4) = 0.15;
sub2.Position(2) = 0.5;
ax2 = gca;
plot(smooth(coact_WT_DIV28,500),'Color',[0.7 0.7 0.7],'linew',1.3);
axis tight
xlabel('Time (s)');
ylabel('Co-active cells (ms^{#1})');
ax2.XTick = [2*10^4 4*10^4 6*10^4 8*10^4 10*10^4 12*10^4];
ax2.XTickLabel = {'20','40','60','80','100','120'};
xlim([1 120000]);
ylim([0 60]);
ax2.Box = 'off';
title2 = title('WT: DIV 28');
title2.Position(2) = 60;
title2.FontWeight = 'normal';

% Plot Smoothed Burst Vector
sub3 = subplot(3,3,[2.5 3]);
sub3.Position(4) = 0.15;
ax3 = gca;
plot(smooth(coact_PD_DIV14,500),'Color',[0.7 0.7 0.7],'linew',1.3);
axis tight
xticks([]);
ax3.XTickLabel = {};
xlim([1 120000]);
ylim([0 60]);
ax3.Box = 'off';
ax3.XAxis.Visible = 'off';
title3 = title('A53T: DIV 14');
title3.Position(2) = 60;
title3.FontWeight = 'normal';

% Plot Smoothed Burst Vector
sub4 = subplot(3,3,[5.5 6]);
sub4.Position(4) = 0.15;
sub4.Position(2) = 0.5;
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ax4 = gca;
plot(smooth(coact_PD_DIV28,500),'Color',[0.7 0.7 0.7],'linew',1.3);
axis tight
xlabel('Time (s)');
ax4.XTick = [2*10^4 4*10^4 6*10^4 8*10^4 10*10^4 12*10^4];
ax4.XTickLabel = {'20','40','60','80','100','120'};
xlim([1 120000]);
ylim([0 60]);
ax4.Box = 'off';
title4 = title('A53T: DIV 28');
title4.Position(2) = 60;
title4.FontWeight = 'normal';

% Boxplot Firing Rate
sub5 = subplot(3,3,7);
sub5.Position(2) = 0.2;
ax5 = gca;
colors = [[0.4660 0.6740 0.1880];[0.6350 0.0780 0.1840]];
boxplot(Burstrates,g_burstrate,'positions',...
    [1.25 1.75 3.25 3.75 5.25 5.75 7.25 7.75]);
med = findobj(gcf,'tag','Median');
set(med,'Color','k');
out = findobj(gcf,'tag','Outliers');
set(out,'MarkerEdgeColor','k');
box1 = findobj(gcf,'tag','Box');
box1(7).Color = colors(2,:);
box1(5).Color = colors(2,:);
box1(3).Color = colors(2,:);
box1(1).Color = colors(2,:);
box1(8).Color = colors(1,:);
box1(6).Color = colors(1,:);
box1(4).Color = colors(1,:);
box1(2).Color = colors(1,:);
uw = findobj(gcf,'tag','Upper Whisker');
set(uw,'LineStyle','--');
lw = findobj(gcf,'tag','Lower Whisker');
set(lw,'LineStyle','--');
ax5.XTickLabel = {'DIV7','DIV14','DIV21','DIV28'};
ax5.XTick = [1.5 3.5 5.5 7.5];
ylabel('Interburst Interval (s)');
axis square;
ax5.Box = 'off';

% Boxplot Amplitude Half Mean Widths
sub6 = subplot(3,3,8);
sub6.Position(2) = 0.2;
ax6 = gca;
colors = [[0.4660 0.6740 0.1880];[0.6350 0.0780 0.1840]];
boxplot(Durations,g_dur,'positions',...
    [1.25 1.75 3.25 3.75 5.25 5.75 7.25 7.75]);
med = findobj(gcf,'tag','Median');
set(med,'Color','k');
out = findobj(gcf,'tag','Outliers');
set(out,'MarkerEdgeColor','k');
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box2 = findobj(gcf,'tag','Box');
box2(7).Color = colors(2,:);
box2(5).Color = colors(2,:);
box2(3).Color = colors(2,:);
box2(1).Color = colors(2,:);
box2(8).Color = colors(1,:);
box2(6).Color = colors(1,:);
box2(4).Color = colors(1,:);
box2(2).Color = colors(1,:);
uw = findobj(gcf,'tag','Upper Whisker');
set(uw,'LineStyle','--');
lw = findobj(gcf,'tag','Lower Whisker');
set(lw,'LineStyle','--');
ax6.XTickLabel = {'DIV7','DIV14','DIV21','DIV28'};
ax6.XTick = [1.5 3.5 5.5 7.5];
axis square;
ylabel('Burst Width (s)');
ax6.Box = 'off';
legend([box2(8),box2(7)],{'WT','A53T'},'Location',...
    'northeast','Box','off');

% Boxplot Co-Activity
sub7 = subplot(3,3,9);
sub7.Position(2) = 0.2;
ax7 = gca;
colors = [[0.4660 0.6740 0.1880];[0.6350 0.0780 0.1840]];
boxplot(Coactivity,g_co,'positions',...
    [1.25 1.75 3.25 3.75 5.25 5.75 7.25 7.75]);
med = findobj(gcf,'tag','Median');
set(med,'Color','k');
out = findobj(gcf,'tag','Outliers');
set(out,'MarkerEdgeColor','k');
box3 = findobj(gcf,'tag','Box');
box3(7).Color = colors(2,:);
box3(5).Color = colors(2,:);
box3(3).Color = colors(2,:);
box3(1).Color = colors(2,:);
box3(8).Color = colors(1,:);
box3(6).Color = colors(1,:);
box3(4).Color = colors(1,:);
box3(2).Color = colors(1,:);
uw = findobj(gcf,'tag','Upper Whisker');
set(uw,'LineStyle','--');
lw = findobj(gcf,'tag','Lower Whisker');
set(lw,'LineStyle','--');
ax7.XTickLabel = {'DIV7','DIV14','DIV21','DIV28'};
ax7.XTick = [1.5 3.5 5.5 7.5];
axis square;
ylabel('Co-Active Cells (%)');
ax7.Box = 'off';

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Plot Figure 2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Fig2 = figure('Position', [50 622 1599 428],'color','white');

% PCA
sub8 = subplot(1,2,1);
ax8 = gca;
[coeff,score] = pca(zscore(WT_mat_combi_single(:,2:4)));
hold on;
h = scatter(score(:,1),score(:,2),20,...
    WT_mat_combi_single(:,1),'filled');
h.MarkerEdgeColor = [0.7 0.7 0.7];
h.SizeData = 40;
set(gca, 'Box', 'off');
ylabel('PC2','Fontsize',12);
xlabel('PC1','Fontsize',12);
axis square
ax8.YTick = [-4 -2 0 2 4];
xlim([-4 4]);
ylim([-4 4]);
hold on;
plot([-5 5],[0 0],'--','Color',[0.2 0.2 0.2])
hold on;
plot([0 0],[-4 4],'--','Color',[0.2 0.2 0.2])
title1 = title('WT');
title1.FontWeight = 'normal';
title1.Position = [-3.8 3.5 0];
title1.HorizontalAlignment = 'left';

% Plot Dendrogram and Correlation Matrix
axes('Position',[0.45 0.225 0.075 0.58]);
h = dendrogram(tree,0,'reorder',optimal_leafOrder,...
    'Orientation','left','ColorThreshold',10);...
    axis tight; axis off;
set(h,'Color',[0 0 0]);
box off
axes('Position',[0.465 0.1100 0.3347 0.8150]);
hold on; imagesc(1-sim_mat_reordered);
set(gca,'Box','off','TickDir','out','TickLength',[.0 .0],...
    'XMinorTick','off','YMinorTick','off','YGrid','off');
axis off;
axis square;
axis tight;
set(gca,'yticklabel',{[]});
xlabel('Metrics','Fontsize',14);
title2 = title('WT: DIV 28');
title2.FontWeight = 'normal';

%Save
saveas(Fig1,'Network1','png');
saveas(Fig1,'Network1','svg');
saveas(Fig2,'Network2','png');
saveas(Fig2,'Network2','svg');

9



Published with MATLAB® R2019a

10



55

References

[1] Aparna R Desai and Susan K McConnell. “Progressive Restriction in Fate Poten-
tial by Neural Progenitors During Cerebral Cortical Development”. In: Develop-
ment 127.13 (2000), pp. 2863–2872.

[2] Xueming Qian et al. “Timing of CNS Cell Generation: A Programmed Sequence
of Neuron and Glial Cell Production from Isolated Murine Cortical Stem Cells”.
In: Neuron 28.1 (2000), pp. 69–80.

[3] WA Harris. “Temporal Coordinates: The Genes that Fix Cell Fate with Birth
Order”. In: Developmental Cell 1.3 (2001), pp. 313–314.

[4] Santiago Ramón y Cajal. The Neuron and the Glial Cell. Charles C Thomas Pub
Ltd, 1984.

[5] Santiago Ramón y Cajal. New Ideas on the Structure of the Nervous System in
Man and Vertebrates. MIT Press, 1990.

[6] Klaus-Armin Nave. “Myelination and Support of Axonal Integrity by Glia”. In:
Nature 468.7321 (2010), p. 244.

[7] Masaki Ueno et al. “Layer V Cortical Neurons Require Microglial Support for
Survival during Postnatal Development”. In: Nature Neuroscience 16.5 (2013),
p. 543.

[8] Fiona Doetsch. “The Glial Identity of Neural Stem Cells”. In: Nature neuro-
science 6.11 (2003), p. 1127.

[9] Arnold Kriegstein and Arturo Alvarez-Buylla. “The Glial Nature of Embryonic
and Adult Neural Stem Cells”. In: Annual Review of Neuroscience 32 (2009),
pp. 149–184.

[10] Almudena Ramón-Cueto et al. “Functional Recovery ofPparaplegic Rats and Mo-
tor Axon Regeneration in Their Spinal Cords by Olfactory Ensheathing Glia”. In:
Neuron 25.2 (2000), pp. 425–435.

[11] JL Ridet et al. “Reactive Astrocytes: Cellular and Molecular Cues to Biological
Function”. In: Trends in Neurosciences 20.12 (1997), pp. 570–577.

[12] RD Keynes. “The Ionic Movements During Nervous Activity”. In: The Journal of
Physiology 114.1-2 (1951), pp. 119–150.

[13] Alan Lloyd Hodgkin. “The Croonian Lecture: Ionic Movements and Electrical
Activity in Giant Nerve Fibres”. In: Proc. R. Soc. Lond. B 148.930 (1958), pp. 1–
37.

[14] Jian-Kang Zhu. “Regulation of Ion Homeostasis under Salt Stress”. In: Current
Opinion in Plant Biology 6.5 (2003), pp. 441–445.

[15] Raymond Dingledine et al. “The Glutamate Receptor Ion Channels”. In: Phar-
macological Reviews 51.1 (1999), pp. 7–62.

[16] Alan Lloyd Hodgkin. “The Ionic Basis of Electrical Activity in Nerve and Mus-
cle”. In: Biological Reviews 26.4 (1951), pp. 339–409.



References 56

[17] Aaron G Blankenship and Marla B Feller. “Mechanisms Underlying Sponta-
neous Patterned Activity in Developing Neural Circuits”. In: Nature Reviews
Neuroscience 11.1 (2010), p. 18.

[18] Carlo Alberto Maggi and Alberto Meli. “The Sensory-Efferent Function of Capsaicin-
Sensitive Sensory Neurons”. In: General Pharmacology: The Vascular System
19.1 (1988), pp. 1–43.

[19] YEHEZKEL Ben-Ari et al. “Giant Synaptic Potentials in Immature Rat CA3
Hippocampal Neurones.” In: The Journal of Physiology 416.1 (1989), pp. 303–
325.

[20] Philip A Schwartzkroin and David A Prince. “Cellular and Field Potential Prop-
erties of Epileptogenic Hippocampal Slices”. In: Brain Research 147.1 (1978),
pp. 117–130.

[21] Naohide Yamashita, Naohiko Shibuya, and Etsuro Ogata. “Hyperpolarization
of the Membrane Potential Caused by Somatostatin in Dissociated Human Pi-
tuitary Adenoma Cells that Secrete Growth Hormone”. In: Proceedings of the
National Academy of Sciences 83.16 (1986), pp. 6198–6202.

[22] ILAN Lampl and YOSEF Yarom. “Subthreshold Oscillations of the Membrane
Potential: A Functional Synchronizing and Timing Device”. In: Journal of neu-
rophysiology 70.5 (1993), pp. 2181–2186.

[23] Rodolfo R Llinás. “The Intrinsic Electrophysiological Properties of Mammalian
Neurons: Insights Into Central Nervous System Function”. In: Science 242.4886
(1988), pp. 1654–1664.

[24] Diego Contreras. “Electrophysiological Classes of Neocortical Neurons”. In: Neu-
ral Networks 17.5-6 (2004), pp. 633–646.

[25] John A Assad et al. “Brain Function: Novel Technologies Driving Novel Under-
standing”. In: Bioinspired Approaches for Human-Centric Technologies. Springer,
2014, pp. 299–334.

[26] Claire Wood, Christine Williams, and Gareth J Waldron. “Patch Clamping by
Numbers”. In: Drug Discovery Today 9.10 (2004), pp. 434–441.

[27] Yasuhiko Jimbo et al. “A System for MEA-Based Multisite Stimulation”. In:
IEEE Transactions on Biomedical Engineering 50.2 (2003), pp. 241–248.

[28] Shimon Marom and Goded Shahaf. “Development, Learning and Memory in
Large Random Networks of Cortical Neurons: Lessons Beyond Anatomy”. In:
Quarterly Reviews of Biophysics 35.1 (2002), pp. 63–87.

[29] Rolf Weis and Peter Fromherz. “Frequency Dependent Signal Transfer in Neu-
ron Transistors”. In: Physical Review E 55.1 (1997), p. 877.

[30] Alan L Hodgkin and Andrew F Huxley. “A Quantitative Description of Mem-
brane Current and its Application to Conduction and Excitation in Nerve”. In:
The Journal of physiology 117.4 (1952), pp. 500–544.

[31] Douglas J Bakkum et al. “Tracking Axonal Action Potential Propagation on a
High-Density Microelectrode Array Across Hundreds of Sites”. In: Nature Com-
munications 4 (2013), p. 2181.

[32] Marie Engelene J Obien et al. “Revealing Neuronal Function through Microelec-
trode Array Recordings”. In: Frontiers in Neuroscience 8 (2015), p. 423.

[33] David A Robinson. “The Electrical Properties of Metal Microelectrodes”. In: Pro-
ceedings of the IEEE 56.6 (1968), pp. 1065–1071.



References 57

[34] Matthew J Nelson et al. “Review of Signal Distortion Through Metal Microelec-
trode Recording Circuits and Filters”. In: Journal of Neuroscience Methods 169.1
(2008), pp. 141–157.

[35] Andreas Hierlemann et al. “Growing Cells atop Microelectronic Chips: Inter-
facing Electrogenic Cells in vitro with CMOS-Based Microelectrode Arrays”. In:
Proceedings of the IEEE 99.2 (2010), pp. 252–284.

[36] Michele Fiscella et al. “Recording from Defined Populations of Retinal Ganglion
Cells using a High-Density CMOS-Integrated Microelectrode Array with Real-
Time Switchable Electrode Selection”. In: Journal of Neuroscience Methods 211.1
(2012), pp. 103–113.

[37] Urs Frey et al. “Microelectronic System for High-Resolution Mapping of Extra-
cellular Electric Fields Applied to Brain Slices”. In: Biosensors and Bioelectronics
24.7 (2009), pp. 2191–2198.

[38] Lucian Medrihan et al. “Asynchronous GABA Release is a Key Determinant of
Tonic Inhibition and Controls Neuronal Excitability: A Study in the Synapsin
II-/- Mouse”. In: Cerebral cortex 25.10 (2014), pp. 3356–3368.

[39] Roeland Huys et al. “Single-Cell Recording and Stimulation with a 16k Micro-
Nail Electrode Array Integrated on a 0.18 µm CMOS Chip”. In: Lab on a Chip
12.7 (2012), pp. 1274–1280.

[40] A Odawara et al. “Long-Term Electrophysiological Activity and Pharmacological
Response of a Human Induced Pluripotent Stem Cell-Derived Neuron and As-
trocyte Co-Culture”. In: Biochemical and biophysical research communications
443.4 (2014), pp. 1176–1181.

[41] Hayder Amin et al. “Electrical Responses and Spontaneous Activity of Human
iPS-Derived Neuronal Networks Characterized for 3-Month Culture with 4096-
Electrode Arrays”. In: Frontiers in Neuroscience 10 (2016), p. 121.

[42] Amy J Wagers and Irving L Weissman. “Plasticity of Adult Stem Cells”. In: Cell
116.5 (2004), pp. 639–648.

[43] In-kyung Park et al. “Bmi-1 is Required for Maintenance of Adult Self-Renewing
Haematopoietic Stem Cells”. In: Nature 423.6937 (2003), p. 302.

[44] Martin Körbling and Zeev Estrov. “Adult Stem Cells for Tissue Repair—A New
Therapeutic Concept?” In: New England Journal of Medicine 349.6 (2003), pp. 570–
582.

[45] Jon S Odorico, Dan S Kaufman, and James A Thomson. “Multilineage Differ-
entiation from Human Embryonic Stem Cell Lines”. In: Stem Cells 19.3 (2001),
pp. 193–204.

[46] Kazutoshi Takahashi and Shinya Yamanaka. “Induction of Pluripotent Stem
Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors”.
In: Cell 126.4 (2006), pp. 663–676.

[47] Kazutoshi Takahashi et al. “Induction of Pluripotent Stem Cells from Adult Hu-
man Fibroblasts by Defined Factors”. In: Cell 131.5 (2007), pp. 861–872.

[48] Junying Yu et al. “Induced Pluripotent Stem Cell Lines Derived from Human
Somatic Cells”. In: Science 318.5858 (2007), pp. 1917–1920.

[49] Dirk Hockemeyer et al. “Efficient Targeting of Expressed and Silent Genes in
Human ESCs and iPSCs using Zinc-Finger Nucleases”. In: Nature Biotechnology
27.9 (2009), p. 851.



References 58

[50] Michelle Christian et al. “Targeting DNA Double-Strand Breaks with TAL Ef-
fector Nucleases”. In: Genetics 186.2 (2010), pp. 757–761.

[51] Le Cong et al. “Multiplex Genome Engineering using CRISPR/Cas Systems”. In:
Science 339.6121 (2013), pp. 819–823.

[52] Dirk Hockemeyer and Rudolf Jaenisch. “Induced Pluripotent Stem Cells Meet
Genome Editing”. In: Cell Stem Cell 18.5 (2016), pp. 573–586.

[53] William Dauer and Serge Przedborski. “Parkinson’s Disease: Mechanisms and
Models”. In: Neuron 39.6 (2003), pp. 889–909.

[54] Joseph Jankovic. “Parkinson’s Disease: Clinical Features and Diagnosis”. In:
Journal of Neurology, Neurosurgery & Psychiatry 79.4 (2008), pp. 368–376.

[55] Sigurlaug Sveinbjornsdottir. “The Clinical Symptoms of Parkinson’s Disease”.
In: Journal of neurochemistry 139 (2016), pp. 318–324.

[56] A E Lang MD L V Kalia MD. “Parkinson’s Disease”. In: The Lancet 386 (2015),
pp. 896–912.

[57] Mihael H Polymeropoulos et al. “Mutation in the α-synuclein gene identified in
families with Parkinson’s disease”. In: Science 276.5321 (1997), pp. 2045–2047.

[58] AB Singleton et al. “α-Synuclein Locus Triplication Causes Parkinson’s Disease”.
In: Science 302.5646 (2003), pp. 841–841.

[59] Jan Müller et al. “High-Resolution CMOS MEA Platform to Study Neurons at
Subcellular, Cellular, and Network Levels”. In: Lab on a Chip 15.13 (2015),
pp. 2767–2780.

[60] Tiziano Barberi et al. “Neural Subtype Specification of Fertilization and Nuclear
Transfer Embryonic Stem Cells and Application in Parkinsonian Mice”. In: Na-
ture Biotechnology 21.10 (2003), p. 1200.

[61] FUJIFILM Cellular Dynamics. iCell DopaNeurons. https://fujifilmcdi.com/products-
services/icell-products/icell-dopaneurons/. July 13, 2019.

[62] FUJIFILM Cellular Dynamics. MyCell DopaNeurons(A53T). https://fujifilmcdi.com/products-
services/icell-products/mycell-dopaneurons-a53t/. July 13, 2019.

[63] Benoit I Giasson et al. “Neuronal α-Synucleinopathy with Severe Movement Dis-
order in Mice Expressing A53T Human α-Synuclein”. In: Neuron 34.4 (2002),
pp. 521–533.

[64] FUJIFILM Cellular Dynamics. iCell Astrocytes. https://fujifilmcdi.com/products-
services/icell-products/icell-astrocytes/. July 13, 2019.

[65] Suzanne Lesage et al. “Large-Scale Screening of the Gaucher’s Disease-Related
Glucocerebrosidase Gene in Europeans with Parkinson’s Disease”. In: Human
Molecular Genetics 20.1 (2010), pp. 202–210.

[66] Sonja Kriks et al. “Dopamine Neurons Derived from Human ES Cells Efficiently
Engraft in Animal Models of Parkinson’s Disease”. In: Nature 480.7378 (2011),
p. 547.

[67] Stefania Fedele et al. “Expansion of Human Midbrain Floor Plate Progenitors
from Induced Pluripotent Stem Cells Increases Dopaminergic Neuron Differen-
tiation Potential”. In: Scientific Reports 7.1 (2017), p. 6036.

[68] MaxWell Biosystems. MaxOne MEA Wells. https://www.mxwbio.com/products/maxone-
mea-system-microelectrode-array/maxone-mea-wells/. July 3, 2019.



References 59

[69] Marco Ballini et al. “A 1024-Channel CMOS Microelectrode Array with 26,400
Electrodes for Recording and Stimulation of Electrogenic Cells In Vitro”. In:
IEEE Journal of Solid-State Circuits 49.11 (2014), pp. 2705–2719.

[70] Pierre Yger et al. “A Spike Sorting Toolbox for up to Thousands of Electrodes
Validated with Ground Truth Recordings in Vitro and in Vivo”. In: ELife 7 (2018),
e34518.

[71] Cyrille Rossant et al. “Spike Ssorting for Large, Dense Electrode Arrays”. In:
Nature Neuroscience 19.4 (2016), p. 634.

[72] Gaute T Einevoll et al. “Towards Reliable Spike-Train Recordings from Thou-
sands of Neurons with Multielectrodes”. In: Current Opinion in Neurobiology
22.1 (2012), pp. 11–17.

[73] JM Deniau et al. “Electrophysiological Properties of Identified Output Neurons
of theRrat Substantia Nigra (Pars Compacta and Pars Reticulata): Evidences
for the Existence of Branched Neurons”. In: Experimental Brain Research 32.3
(1978), pp. 409–422.

[74] PG Guyenet and GK Aghajanian. “Antidromic Identification of Dopaminergic
and Other Output Neurons of the Rat Substantia Nigra”. In: Brain Research
150.1 (1978), pp. 69–84.

[75] James M Tepper et al. “Autoreceptor-Mediated Changes in Dopaminergic Ter-
minal Excitability: Effects of Striatal Drug Infusions”. In: Brain Research 309.2
(1984), pp. 309–316.

[76] Seung U Kim, Kenneth G Warren, and Madhu Kalia. “Tissue Culture of Adult
Human Neurons”. In: Neuroscience Letters 11.2 (1979), pp. 137–141.

[77] Cedric Bardy et al. “Neuronal Medium that Supports Basic Synaptic Functions
and Activity of Human Neurons in Vitro”. In: Proceedings of the National Academy
of Sciences 112.20 (2015), E2725–E2734.



Gustavo Prack
Curriculum Vitae

"Master’s student of Nanoscience at the University of Basel in
Switzerland, with focus on neurobiology and condensed matter

physics."

Education
02/2017-
Present

Master of Science in Nanosciences (Physics), University of Basel, Basel.
Study emphases: Neurobiology and Condensed Matter Physics
First project work at the University of Basel :
- "KPFM Measurements of High Efficiency CIGS- and Perovskite Solar Cells"
Second project work at the ETH Zürich:
- "Development of a Novel Electrophysiological Measurement Tool In Vitro using AC-SECM"
Master’s thesis at the Bio Engineering Laboratory, ETH Zürich:
- "Studying the Electrophysiological Phenotype of Human Dopaminergic Neurons with High-Density
Microelectrode Arrays"

09/2013-
01/2017

Bachelor of Science in Nanosciences, University of Basel, Basel.
8 Block courses (equivalent to Bachelor’s thesis):
- "Graphene Growth on Ni(100) by UHV Chemical Vapour Deposition"
- "Fabrication of Hall Bar Structures on Gallium Arsenide Wafer Surfaces"
- "Programing of a Pipetting Robot to Study Parkinson’s Disease"
- "Magnetic Refrigeration on a Pulse Tube Platform"
- "Microscopy"
- "Polymer Vesicles as a Mode of Transportation through Nuclear Pore Complexes"
- "Reaction Between Sympathetically Cooled O+

2 Ions with a Beam of COS"
- "Muon Spin Rotation/Relaxation Spectroscopy of Mo8Ga41 and EuTiO3"

08/2007-
06/2012

Swiss High School Degree ("Matura"), Gymnasium Bäumlihof, Basel.
Study emphases: Biology and Chemistry

Professional Experience
02/2016-
05/2017

Math Teaching Assistant, University of Basel, Basel.
- Tutor in Mathematics I for students of natural sciences
- Tutor in Mathematics II for students of natural sciences

Steingrubenweg 63 – Riehen 4125, Basel-Stadt, Switzerland
H +41 76 422 63 74 • B gustavo.prack@unibas.ch

Date of birth: 26th of July, 1993 1/2



Languages
German Native language

Portuguese
(Brazilian)

Native language

English Fluent
French Intermediate

Awards
2011 1st Place, Science On the Move.

The nation-wide Swiss class competition in biology and biochemistry

Steingrubenweg 63 – Riehen 4125, Basel-Stadt, Switzerland
H +41 76 422 63 74 • B gustavo.prack@unibas.ch

Date of birth: 26th of July, 1993 2/2


	Abstract
	Acknowledgements
	Introduction
	Cellular Components of the Nervous System
	Electrogenesis of Membrane Excitability

	Microelectrode Array Technology in Neuroscience
	Using Stem Cells to Study Neurological Disorders
	Adult and Embryonic Stem Cell
	Induced Pluripotent Stem Cell

	State of Research, Motivation and Aim

	Materials and Methods
	Cell Cultures
	Cell Plating

	High-Density Microelectrode Array
	HD-MEA Recordings
	Spike Sorting

	Data Analysis
	Single Cell Analysis
	Network Analysis
	Principal Component Analysis and Correlations
	Repeated Measures Analysis of Variance


	Results
	iPSC-Derived Neurons
	Development of iPSC-Derived Neurons and Astrocytes
	Single Cell Features
	Network Features
	Significance of Single Cell- and Network Features

	ESC-Derived Neurons
	Cell Culturing Media Effect
	Impact of GBA1-/- on Spontaneous Activity


	Discussion
	Defining the Neuronal Phenotype
	Inhibitory- and Excitatory Effects of Culturing Media
	GBA1 Affecting Network Creation

	Conclusion and Outlook
	Appendix
	References

